在使用AWBus-lite對設備進行管理時,無論設備處于 AWBus-lite拓撲結構中的哪個位置,只要其能夠提供某種標準服務,就可以使用相應的通用接口對其進行操作。本文將從接口的定義和實現兩個方面,深入理解AWbus-lite工作的原理。
2018-07-23 09:08:318015 重點講解了運放的內部電路結構,幫助深入理解運放的工作原理。運放是設計使用非常頻繁且非常重要器件,通常在信號放大,電流采樣電路里常見,對于初學者經常感到困惑,所以掌握好能夠幫助你很好的分析電路。
2019-04-19 09:10:585920 重點講解了運放的內部電路結構,幫助深入理解運放的工作原理。運放是設計使用非常頻繁且非常重要器件,通常在信號放大,電流采樣電路里常見。
2019-04-22 16:02:1016698 今天給大俠帶來的是一周掌握FPGA Verilog HDL 語法,今天開啟第二天。上一篇提到了整數型以及參數型,此篇我們繼續來看變量以及后續其他內容,結合實例理解理論語法,會讓你理解運用的更加透徹。下面咱們廢話就不多說了,一起來看看吧。
2022-07-18 09:52:361262 對于MOSFET,米勒效應(Miller Effect)指其輸入輸出之間的分布電容(柵漏電容)在反相放大作用下,使得等效輸入電容值放大的效應。由于米勒效應,MOSFET柵極驅動過程中,會形成平臺電壓,引起開關時間變長,開關損耗增加,給MOS管的正常工作帶來非常不利的影響。
2023-04-26 09:20:532057 本文主要介紹了米勒效應的由來,并詳細分析了MOSFET開關過程米勒效應的影響,幫助定性理解米勒平臺的形成機制。最后給出了場效應管柵極電荷的作用。
2023-05-16 09:47:341316 本帖最后由 發燒友之麒麟 于 2014-10-6 09:19 編輯
C語言講義(譚浩強)及深入理解C指針,自己在用的資料,覺得寫得挺好的就拿出來分享,需要的請回[attach]214757[/attac]
2014-10-02 17:05:11
轉載文章來自:MOSFET理解與應用:Lec 12—一篇文章搞定共源級放大電路https://baijiahao.baidu.com/s?id=1616701539915827630&wfr
2021-12-29 06:44:23
)限制線跟隨者最大功率限制線就是溫度不穩定限制線,這條限制線是設計者比較容易忽視的限制線。要深入理解此條限制線,需要理解MOSFET溫度不穩定的條件是什么。MOSFET溫度達不到穩定狀態,意味著隨著溫度
2018-07-12 11:34:11
深入理解Android
2012-08-20 15:30:08
本帖最后由 lee_st 于 2018-2-26 00:21 編輯
深入理解Android:WiFi模塊 NFC和GPS卷
2018-02-25 22:26:16
本帖最后由 lee_st 于 2018-2-25 22:24 編輯
深入理解C指針(帶書簽完整版)
2018-02-25 22:23:30
這里有三個對深入理解C語言的資料,覺得不錯,分享一下
2014-08-07 21:37:55
深入理解Linux內核 中文版+英文原版 經典之作
2016-05-17 08:18:47
深入理解SD卡原理和其內部結構總結
2012-08-18 11:11:00
深入理解SQLite3之sqlite3_exec及回調函數sqlite3:深入理解sqlite3_stmt 機制sqlite3: sqlite3_step 函數sqlite3
2021-11-04 07:11:56
時鐘系統是處理器的核心,所以在學習STM32所有外設之前,認真學習時鐘系統是必要的,有助于深入理解STM32。下面是從網上找的一個STM32時鐘框圖,比《STM32中文參考手冊》里面的是中途看起來清晰一些:重要的時鐘:PLLCLK,SYSCLK,HCKL,PCLK1,...
2021-08-12 07:46:20
深入理解LTE-A
2019-02-26 10:21:51
深入理解光耦模擬隔離放大電路的技術奧秘
?編輯
▲ 圖1 仿真原理圖二、原理分析
之所以這個電路圖看起來容易讓人感到困惑,實際上就是這個仿真電路中,錯誤的使用了這樣的光電三極管來表示HCNR201
2024-01-10 10:12:39
和trcohili的帖子。深入理解和實現RTOS_連載1_RTOS的前生今世今天發布的是第一篇,"RTOS的前生今世"。通過軟件系統結構的比對簡要的介紹rtos為何而生。如果讀者對RTOS
2014-05-29 11:20:54
和trcohili的帖子。trochili rtos完全是作者興趣所在,且行且堅持,比沒有duo。深入理解和實現RTOS_連載1_RTOS的前生今世今天發布的是第一篇,"RTOS的前生今世"
2014-05-30 01:02:26
1.指針函數的定義 顧名思義,指針函數即返回指針的函數。其一般定義形式如下: 類型名 *函數名(函數參數表列); 其中,后綴運算符括號“()”表示這是一個函數,其前綴運算符星號“*”表示此函數為指針型函數,其函數值為指針,即它帶回來的值的類型為指針,當調用這個函數后,將得到一個“指向返回值為…的指針(地址),“類型名”表示函數返回的指針指向的類型”。 “(函數參數表列)”中的括號為函數調用運算符,在調用語句中,即使函數不帶參數,其參數表的一對括號也不能省略。其示例如下: int *pfun(int, int); 由于“*”的優先級低于“()”的優先級,因而pfun首先和后面的“()”結合,也就意味著,pfun是一個函數。即: int *(pfun(int, int)); 接著再和前面的“*”結合,說明這個函數的返回值是一個指針。由于前面還有一個int,也就是說,pfun是一個返回值為整型指針的函數。 我們不妨來再看一看,指針函數與函數指針有什么區別? int (*pfun)(int, int); 通過括號強行將pfun首先與“*”結合,也就意味著,pfun是一個指針,接著與后面的“()”結合,說明該指針指向的是一個函數,然后再與前面的int結合,也就是說,該函數的返回值是int。由此可見,pfun是一個指向返回值為int的函數的指針。 雖然它們只有一個括號的差別,但是表示的意義卻截然不同。函數指針的本身是一個指針,指針指向的是一個函數。指針函數的本身是一個函數,其函數的返回值是一個指針。2. 用函數指針作為函數的返回值 在上面提到的指針函數里面,有這樣一類函數,它們也返回指針型數據(地址),但是這個指針不是指向int、char之類的基本類型,而是指向函數。對于初學者,別說寫出這樣的函數聲明,就是看到這樣的寫法也是一頭霧水。比如,下面的語句: int (*ff(int))(int *, int);我們用上面介紹的方法分析一下,ff首先與后面的“()”結合,即: int (*(ff(int)))(int *, int); // 用括號將ff(int)再括起來也就意味著,ff是一個函數。 接著與前面的“*”結合,說明ff函數的返回值是一個指針。然后再與后面的“()”結合,也就是說,該指針指向的是一個函數。這種寫法確實讓人非常難懂,以至于一些初學者產生誤解,認為寫出別人看不懂的代碼才能顯示自己水平高。而事實上恰好相反,能否寫出通俗易懂的代碼是衡量程序員是否優秀的標準。一般來說,用typedef關鍵字會使該聲明更簡單易懂。在前面我們已經見過: int (*PF)(int *, int);也就是說,PF是一個函數指針“變量”。當使用typedef聲明后,則PF就成為了一個函數指針“類型”,即: typedef int (*PF)(int *, int);這樣就定義了返回值的類型。然后,再用PF作為返回值來聲明函數: PF ff(int);下面將以程序清單1為例,說明用函數指針作為函數的返回值的用法。當程序接收用戶輸入時,如果用戶輸入d,則求數組的最大值,如果輸入x,則求數組的最小值,如果輸入p,則求數組的平均值。程序清單 1求最值與平均值示例1 #include2 #include 3 double GetMin(double *dbData, int iSize)// 求最小值4 {5double dbMin;6int i;78assert(iSize>0);9dbMin=dbData[0];10 for (i=1; idbData) {12dbMin=dbData;13 }14 }15 return dbMin;16}1718double GetMax(double *dbData, int iSize)// 求最大值19{20double dbMax;21int i;2223assert(iSize>0);24dbMax=dbData[0];25for (i=1; i0);39for (i=0; i
2019-01-23 06:35:17
的無線收發、同時盡量減小對外的輻射量,需要進行正確地設計。因此需要進一步理解和確定正確的電極尺寸、它們的設計、工作電壓、功率值、最佳工作頻率和總的尺寸約束條件。一般情況下,理想的頻率范圍在200kHz至
2012-12-09 22:51:43
深入理解計算機系統第9章 虛擬存儲器
2019-06-25 09:49:40
前言《圖解網絡硬件》本書作者三輪賢一是硅谷網絡設備公司日本分部資深系統工程師,重點講述了在實際網絡建設工程中真實使用的網絡硬件設備及其相關背景知識,能夠幫助讀者深入理解計算機網絡在工程實踐中某些容易
2021-07-27 06:40:35
深入理解TCP/UDP通信原理
2021-03-30 06:14:42
本文是我在知乎上的一篇回答,有興趣的朋友可以參考下面的鏈接,不過兩篇文章是一樣的。本文適用于初學者。硬件功能方面,十分建議學習好TIM,systick,GPIO,USART,NVIC這幾個東西,最好能深入理解,因為這幾個東西常常是出現在很多個項目當中的,非常重要的東西。一,環境的...
2021-08-23 08:28:27
今天收到了《深入理解FFmpeg》
嶄新的書,一個在2022年較近距離接觸過卻尚未深入研究的領域圖像處理。最近剛好在作這方面的研究,希望自己可以把握這次機會,好好學習下 FFMpeg,相信可以讓自己
2024-01-07 18:57:06
《深入理解LINUX內存管理》學習筆記1
2016-11-07 10:20:16
《深入理解Linux網絡技術內幕》(EN)
2018-02-06 15:17:30
也陸陸續續看了一些資料,但是在多方權衡之后還是放棄了這種幼稚的想法,還是老老實實做好自己的應用開發,雖然薪資和芯片設計本身相差不少。扯遠了,回到書本本身,一起來領略一下《深入理解微電子
2023-05-29 22:24:28
吧,與感興趣的同仁一起來領略一下《深入理解微電子電路設計》吧!
《深入理解微電子電路設計》是2020年清華大學出版社出版的圖書,由宋延強翻譯。原書作者是[美] 理查德 · C.耶格(Richard
2023-07-29 11:59:12
,涵蓋音視頻基礎知識、FFmpeg參數解析、API使用、內部組件的開發定制
行業大咖審校,多名業界專家與學者作序推薦
詳細解讀實際應用與開發案例,幫助讀者深入理解FFmpeg
大咖推薦
我
2023-11-15 14:26:01
工程師知道哪個參數起主導作用并更加深入理解MOSFET。1. 開通過程中MOSFET開關損耗2. 關斷過程中MOSFET開關損耗3. Coss產生的開關損耗4.Coss對開關過程的影響希望大家看了本文,都能深入理解功率MOSFET的開關損耗。
2021-01-30 13:20:31
【非常牛逼資料分享】深入理解MOSFET規格書datasheet需要原版穩定的朋友,請自行回帖下載。 [hide]https://pan.baidu.com/s/1o85LQWE[/hide] 文章比較長,截了一部分資料的圖片如下
2017-10-24 16:45:30
6月14日晚上19點,戰"碼"先鋒第五期直播 《深入理解OpenHarmony系統啟動,輕松踏上設備軟件開發之旅》 ,在OpenHarmony社群內成功舉行。 ?本期課程,由華為
2022-06-15 14:35:25
在實際的設計中,尤其是對高頻變壓器的設計,基本都會設計到集膚效應這個概念,通常我們都是了解了其計算公式,但是并沒有對其進行深入的理解。要想設計更合適的變壓器,我們有必要對這個概念進行更深入的剖析,具體請參考附件。
2019-04-14 22:42:46
[導讀] 從這篇文章開始,將會不定期更新關于嵌入式C語言編程相關的個人認為比較重要的知識點,或者踩過的坑。為什么要深入理解棧?做C語言開發如果棧設置不合理或者使用不對,棧就會溢出,溢出就會遇到無法
2022-02-15 06:09:14
是正電壓或負電壓),改變感應的負電荷數量,從而改變ID的大小。VP為ID=0時的-VGS,稱為夾斷電 壓。除了上述采用P型硅作襯底形成N型導電溝道的N溝道場效應管(MOSFET)外,也可用N型硅作襯底
2011-12-19 16:52:35
功率場效應管MOSFET,功率場控晶體管
2019-04-10 10:02:53
結合起來,如下圖所示。雙向電機驅動電路三、場效應管MOSFET應用在邏輯門電路中在這之前,先簡單介紹一下邏輯門。雙輸入與門(AND)雙輸入與門(AND)是最容易理解的邏輯。如下圖所示。與門邏輯圖只有兩個
2022-09-06 08:00:00
N溝道場效應管(電子為載流子),P溝道場效應管(空穴為載流子)。絕緣柵場效應管有四種類型:N溝道增強型MOSFET、N溝道耗盡型MOSFET、P溝道增強型MOSFET、P溝道耗盡型MOSFET。N溝道
2019-06-25 04:20:03
深入理解ES6之函數
2020-05-22 07:40:56
二極管鉗位作用如何運用?在電路設計過程中很多位置需要用二極管鉗位,如何深入理解和運用?
2019-04-03 03:03:34
如何更加深入理解MOSFET開關損耗?Coss產生開關損耗與對開關過程有什么影響?
2021-04-07 06:01:07
MOSFET在電源中的重要性自不必多說, 但如何讀懂并理解MOSFET的Datasheet ? 請參考以下兩篇文章,給你解答本資料分為英文版和中文版,任君選擇,學習參考
2019-03-05 17:09:44
對arm按鍵中斷還是不太了解深入寄存器去看看使用key_init()就能得到按鍵按下的值,所以中斷函數在key)_init里key_init()分析初始化io口對應的按鍵使能io口使能RCC寄存器里
2021-08-16 07:05:25
為什么要深入理解棧?做C語言開發如果棧設置不合理或者使用不對,棧就會溢出,溢出就會遇到無法預測亂飛現象。所以對棧的深入理解是非常重要的。注:動畫如果看不清楚可以電腦看更清晰啥是棧先來看一段動畫:沒有
2022-02-15 07:01:00
深入理解計算機系統本書適用于那些想要寫出更快、更可靠程序的程序員。通過掌握程序是如何映射到系統上,以及程序是如何執行的,讀者能夠更好的理解程序的行為為什么是
2009-10-09 16:43:260 深入理解應用廣泛的QMatrix 技術作者:Hal Philipp 量研集團首席技術官摘要在家電、消費電子和手機應用中,觸摸傳感控制正在日益取代機電開關。觸摸傳感的流行獲有很強的
2010-02-06 17:08:3128 本文不準備寫成一篇介紹功率MOSFET的技術大全,只是讓讀者去了解如何正確的理解功率MOSFET數據表中的常用主要參數,以
2010-12-06 10:52:451156 電子發燒友網站提供《深入理解Linux虛擬內存管理_愛爾蘭/戈爾曼著.txt》資料免費下載
2015-02-09 15:19:270 電子發燒友網站提供《深入理解LINUX內核(中文版)_ 陳莉君/馮銳/牛欣源譯.txt》資料免費下載
2015-02-11 11:16:330 深入理解三極管的相應資料,有需要的可以下載,不喜勿噴
2016-01-14 16:19:1124 功率MOS場效應晶體管技術講座_功率MOSFET特性參數的理解。
2016-03-24 17:59:0847 深入理解Android之資源文件
2017-01-22 21:11:0222 《深入理解Android》文前
2017-03-19 11:23:200 《深入理解Android:卷I》
2017-03-19 11:23:450 深入理解Android網絡編程
2017-03-19 11:26:351 開關電源技術saber深入理解和鞏固驗證基本理論知識指導書
2017-09-15 16:19:3014 MOS的導通電阻隨溫度上升而上升,下圖顯示該MOS的導通電阻在結溫為140度的時候,為20度時候的2倍。
2017-10-16 08:55:4011226 深入理解Linux內核(第三版)中文版
2017-11-28 11:54:150 深入理解Java虛擬機之判斷對象是否存活 我們知道Java虛擬機中對象的存儲位置在堆上,所以GC回收主要也就是在堆上進行的,那么垃圾收集器在進行對象回收的時候肯定不能隨便收集,必須要判斷對象的狀態
2017-11-29 01:06:51957 深入理解計算機系統(中文版)
2018-01-10 16:11:030 這里提了三個概念: 堆,棧,以及堆棧。我把棧和堆棧的概念等同了。所以,接下來只要把兩個概念弄清楚就可以了:堆和棧。先說由來。由于我的工作大部分是和單片機相關的,因此也是基于嵌入式的這個方面的理解。
2018-03-04 15:57:523809 深入理解C指針
2018-03-21 09:42:45116 專家面對面大連站_深入理解高精度sigma-delta型ADC
2019-08-12 03:04:002001 深入理解并應用C51對標準ANSIC的擴展是學習C51的關鍵之一。因為大多數擴展功能都是直接針對8051系列CPU硬件的。大致有以下8類:
2019-06-26 17:43:000 為了透徹理解Linux的工作機理,以及為何它在各種系統上能順暢運行,你需要深入到內核的心臟。
2019-11-25 09:34:061520 本文檔的主要內容詳細介紹的是深入理解網絡編程框架詳細關系原理圖合集免費下載。
2019-11-29 15:31:227 深入淺出理解阻抗匹配
2020-02-03 15:14:393645 老司機帶你深入理解ST庫中的assert_param語句
2020-03-14 14:52:503373 更加深入理解I2C總線、協議及應用
2020-03-20 09:29:212999 下文主要介紹 mosfet 的主要參數,通過此參數來理解設計時候的考量一、場效應管的參數很多,一般 datasheet 都包含如下關鍵參數:
2020-07-09 16:43:2127 sparc體系架構的窗口寄存器的深入理解 1.概述 2.窗口寄存器的特性 3.程序的設計 4.sparc設計對于嵌入式編程的優劣 1.概述 sparc這種架構有著特殊的窗口寄存器,使用sparc芯片
2021-01-07 10:39:593200 深入理解MOS管電子版資源下載
2021-07-09 09:43:010 如何深入理解用戶意圖,實現服務精準分發。
2021-10-22 15:41:081573 深入理解計算機系統中文版pdf下載
2021-11-11 18:11:260 為什么要深入理解棧?做C語言開發如果棧設置不合理或者使用不對,棧就會溢出,溢出就會遇到無法預測亂飛現象。所以對棧的深入理解是非常重要的。注:動畫如果看不清楚可以電腦看更清晰啥是棧先來看一段動畫:沒有
2021-12-16 16:58:129 [導讀] 從這篇文章開始,將會不定期更新關于嵌入式C語言編程相關的個人認為比較重要的知識點,或者踩過的坑。為什么要深入理解棧?做C語言開發如果棧設置不合理或者使用不對,棧就會溢出,溢出就會遇到無法
2021-12-16 16:58:220 電子產品2.2 要深入理解RTOS就必須深入理解CPU架構3. 課程重點系統課程學習 5分鐘拿下你的三連,RTOS的最通俗理解! 單片機_RTOS_架構1. RTOS的概念1.1 用人來類
2021-12-20 19:08:5216 不知道你是否想過,一個LED燈點亮過程的本質是什么。當你是一個小白的時候,點亮一個LED燈,IDE都會幫你做好所有的事情,你只需要點擊一下編譯即可。但是,當你成長到一定程度時,就需要好好想想,一個LED的點亮,其實是對單片機中背后原理機制真正的深入理解。今天我就帶你,來深入理解一個LDE點亮的過程。
2021-12-22 19:08:219 為什么要深入理解棧?做C語言開發如果棧設置不合理或者使用不對,棧就會溢出,溢出就會遇到無法預測亂飛現象。所以對棧的深入理解是非常...
2022-01-26 17:55:422 本文首發于 GiantPandaCV :深入理解神經網絡中的反(轉置)卷積作者:梁德澎本文主要是把之前在知乎上的回答:反卷積和上采樣+卷積的區別...
2022-02-07 11:17:570 本文介紹了米勒效應的由來,并詳細分析了MOSFET開關過程米勒效應的影響,幫助定性理解米勒平臺的形成機制。最后給出了場效應管柵極電荷的作用。
2022-03-10 14:44:186226 想深入理解操作系統的進程調度,需要先獲得一些準備知識,這樣后面就不懵圈啦:
2022-03-16 10:58:031952 剛接觸芯片中集成了這種功能的時候,一時之間到不算太理解這項技術的意義,然后找了一些資料,然后找到兩個分析電路進行大致介紹。
2022-03-16 12:45:388480 要想深入理解Verilog就必須正視Verilog語言同時具備硬件特性和軟件特性。
2022-07-07 09:54:481124 功率MOSFET特性參數的理解
2022-07-13 16:10:3924 MOSFET門級電路的深入介紹。
2022-10-24 15:01:290 Rust enum 是一個非常強大的特性, 很多人好奇他內部是如何實現的, 這里作者從生成的匯編代碼來幫你深入理解 Rust 的 enum. 一些關鍵結論:
2022-11-15 11:13:55345 系統架構和驅動框架,助力開發者快速上手OpenHarmony系統開發。 詳情見海報內容,資深軟件開發工程師梁開祝老師帶你一起學習進步。 原文標題:成長計劃知識賦能 | 第九期:漸進式深入理解
2023-03-25 04:25:02253 場效應管MOSFET是mos管嗎?場效應管mos管的區別?場效應管和mos管有什么不一樣的地方?? MOSFET和場效應管(FET)都屬于半導體器件中的一種,類似晶體管。MOSFET是MOS(金屬
2023-09-02 11:31:152546 深入理解redis分布式鎖 哈嘍,大家好,我是指北君。 本篇文件我們來介紹如何Redis實現分布式鎖的演進過程,以及為什么不能直接用Setnx實現分布式鎖。 1、分布式鎖簡介 分布式鎖是控制分布式
2023-10-08 14:13:27490 場效應管(MOSFET)也叫場效應晶體管,是一種單極型的電壓控制器件
2023-10-08 17:23:34562 深入剖析高速SiC MOSFET的開關行為
2023-12-04 15:26:12293 WebSocket是一種在單個TCP連接上進行全雙工通信的通信協議。它的設計目標是在Web瀏覽器和服務器之間提供低延遲、高效的雙向通信。下面是深入理解WebSocket服務器工作原理的一些關鍵概念
2024-01-29 16:48:37144
評論
查看更多