色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>模擬技術>如何降低SiC/SiO?界面缺陷

如何降低SiC/SiO?界面缺陷

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

sio2_sio2是什么意思

在自然界中sio2二氧化硅的存在是非常廣泛的,本內容解釋了sio2是什么意思,sio2的物理性質是什么,讓大家充分了解sio2
2011-12-13 10:41:1320242

改善4H-SiC晶圓表面缺陷的高壓碳化硅解決方案

數量增多。 碳化硅(SiC)在大功率、高溫、高頻等極端條件應用領域具有很好的前景。但盡管商用4H-SiC單晶圓片的結晶完整性最近幾年顯著改進,這些晶圓的缺陷密度依然居高不下。經研究證實,晶圓襯底的表面處理時間越長,則表面
2016-11-04 13:00:021600

物理氣相傳輸法生長SiC晶圓中的缺陷和測試

和Si晶體拉晶工藝類似,PVT法制備SiC單晶和切片形成晶圓過程中也會引入多種缺陷。這些缺陷主要包括:表面缺陷;引入深能級的點缺陷;位錯;堆垛層錯;以及碳包裹體和六方空洞等。其中和和Si晶體拉晶工藝
2023-12-26 17:18:471088

SiC外延層的缺陷控制研究

探索SiC外延層的摻雜濃度控制與缺陷控制,揭示其在高性能半導體器件中的關鍵作用。
2024-01-08 09:35:41631

SIC MOSFET

有使用過SIC MOSFET 的大佬嗎 想請教一下驅動電路是如何搭建的。
2021-04-02 15:43:15

SIC438BEVB-B

SIC438BEVB-B
2023-04-06 23:31:02

SiC MOSFET FIT率和柵極氧化物可靠性的關系

,即非本征缺陷時才有效。與Si MOSFET相比,現階段SiC MOSFET柵極氧化物中的非本征缺陷密度要高得多。電篩選降低了可靠性風險與沒有缺陷的器件相比,有非本征缺陷的器件更早出現故障。無缺陷的器件
2022-07-12 16:18:49

SiC MOSFET SCT3030KL解決方案

與IGBT相比,SiC MOSFET具備更快的開關速度、更高的電流密度以及更低的導通電阻,非常適用于電網轉換、電動汽車、家用電器等高功率應用。但是,在實際應用中,工程師需要考慮SiC MOSFET
2019-07-09 04:20:19

SiC MOSFET的器件演變與技術優勢

一些問題,其中大部分與柵極氧化物直接相關。1978年科羅拉多州立大學的研究人員測量了純SiC與生長的SiO 2之間的雜亂過渡區域。已知這種過渡區具有高密度的界面態和氧化物陷阱,其抑制載流子遷移率并導致
2023-02-27 13:48:12

SiC SBD 晶圓級測試求助

SiC SBD 晶圓級測試 求助:需要測試的參數和測試方法謝謝
2020-08-24 13:03:34

SiC SBD的器件結構和特征

設計得低,開啟電壓也可以做得低一些,但是這也將導致反向偏壓時的漏電流增大。ROHM的第二代SBD通過改進制造工藝,成功地使漏電流和恢復性能保持與舊產品相等,而開啟電壓降低了約0.15V。SiC
2019-03-14 06:20:14

SiC SBD的正向特性

設計得低,開啟電壓也可以做得低一些,但是這也將導致反向偏壓時的漏電流增大。ROHM的第二代SBD通過改進制造工藝,成功地使漏電流和恢復性能保持與舊產品相等,而開啟電壓降低了約0.15V。SiC
2019-04-22 06:20:22

SiC-MOSFET功率晶體管的結構與特征比較

說明一下,DMOS是平面型的MOSFET,是常見的結構。Si的功率MOSFET,因其高耐壓且可降低導通電阻,近年來超級結(Super Junction)結構的MOSFET(以下簡稱“SJ-MOSFET
2018-11-30 11:35:30

SiC-MOSFET的可靠性

柵極偏壓)試驗(+22V、150℃)中,在裝置中未發生故障和特性波動,順利通過1000小時測試。閾值穩定性(柵極正偏壓)SiC上形成的柵極氧化膜界面并非完全沒有陷阱,因此當柵極被長時間施加直流的正偏壓
2018-11-30 11:30:41

SiC-MOSFET的應用實例

本章將介紹部分SiC-MOSFET的應用實例。其中也包括一些以前的信息和原型級別的內容,總之希望通過這些介紹能幫助大家認識采用SiC-MOSFET的好處以及可實現的新功能。另外,除了
2018-11-27 16:38:39

SiC-SBD與Si-PND的正向電壓比較

,VF變高,不會熱失控。但是VF上升,因此具有IFSM(瞬間大電流耐受能力)比Si-FRD低的缺點。SiC-SBD的VF特性改善為提升具有卓越本質的SiC-SBD的特性,使之更加易用,開發了VF降低
2018-11-30 11:52:08

SiC-SBD大幅降低開關損耗

時間trr快(可高速開關)?trr特性沒有溫度依賴性?低VF(第二代SBD)下面介紹這些特征在使用方面發揮的優勢。大幅降低開關損耗SiC-SBD與Si二極管相比,大幅改善了反向恢復時間trr。右側的圖表為
2019-03-27 06:20:11

SiC-SBD的發展歷程

vs IF)、以及正向電壓與抗浪涌電流特性(VF vs IFSM)比較圖。第2代SiC-SBD通過改善制造工藝,保持了與以往產品同等的漏電流和trr性能,同時將VF降低了約0.15V。因而改善了VF帶來
2018-11-30 11:51:17

SiC-SBD的特征以及與Si二極管的比較

耐壓。要想提高Si-SBD的耐壓,只要增厚圖中的n-型層、降低載流子濃度即可,但這會帶來阻值上升、VF變高等損耗較大無法實際應用的問題。因此,Si-SBD的耐壓200V已經是極限。而SiC擁有超過硅
2018-11-29 14:35:50

SiC/GaN具有什么優勢?

基于SiC/GaN的新一代高密度功率轉換器SiC/GaN具有的優勢
2021-03-10 08:26:03

SiC46x是什么?SiC46x的主要應用領域有哪些?

SiC46x是什么?SiC46x有哪些優異的設計?SiC46x的主要應用領域有哪些?
2021-07-09 07:11:50

SiC功率元器件的開發背景和優點

/電子設備實現包括消減待機功耗在內的節能目標。在這種背景下,削減功率轉換時產生的能耗是當務之急。不用說,必須將超過Si極限的物質應用于功率元器件。例如,利用SiC功率元器件可以比IGBT的開關損耗降低85
2018-11-29 14:35:23

SiC功率器件SiC-MOSFET的特點

電導率調制,向漂移層內注入作為少數載流子的空穴,因此導通電阻比MOSFET還要小,但是同時由于少數載流子的積聚,在Turn-off時會產生尾電流,從而造成極大的開關損耗。SiC器件漂移層的阻抗比Si器件低
2019-05-07 06:21:55

SiC功率器件概述

電流和FRD的恢復電流引起的較大的開關損耗,通過改用SiC功率模塊可以明顯減少,因此具有以下效果:開關損耗的降低,可以帶來電源效率的改善和散熱部件的簡化(例:散熱片的小型化,水冷/強制風冷的自然風冷化
2019-05-06 09:15:52

SiC功率器件概述

,相同耐壓的器件,SiC的單位面積的漂移層阻抗可以降低到Si的1/300。而Si材料中,為了改善伴隨高耐壓化而引起的導通電阻增大的問題,主要采用如IGBT(Insulated Gate Bipolar
2019-07-23 04:20:21

SiC功率模塊的特征與電路構成

電流和FRD的恢復電流引起的較大的開關損耗,通過改用SiC功率模塊可以明顯減少,因此具有以下效果:開關損耗的降低,可以帶來電源效率的改善和散熱部件的簡化(例:散熱片的小型化,水冷/強制風冷的自然風冷化
2019-03-25 06:20:09

SiC器件與硅器件相比有哪些優越的性能?

與硅相比,SiC有哪些優勢?SiC器件與硅器件相比有哪些優越的性能?碳化硅器件的缺點有哪些?
2021-07-12 08:07:35

Sic MOSFET SCT30N120 、SCT50N120 功率管

Sic MOSFET 主要優勢.更小的尺寸及更輕的系統.降低無源器件的尺寸/成本.更高的系統效率.降低的制冷需求和散熱器尺寸Sic MOSFET ,高壓開關的突破.SCT30N120
2017-07-27 17:50:07

Sic mesfet工藝技術研究與器件研究

Sic mesfet工藝技術研究與器件研究針對SiC 襯底缺陷密度相對較高的問題,研究了消除或減弱其影響的工藝技術并進行了器件研制。通過優化刻蝕條件獲得了粗糙度為2?07 nm的刻蝕表面;犧牲氧化
2009-10-06 09:48:48

降低汽車電子PCB缺陷率的六個方法

的測試參數均會有所偏差。因而需定期調校機器參數,以保證測試參數的精準度。測試設備在相當一部分的大型PCB企業均半年或一年進行整機保養、調校內部性能參數。追求“零缺陷”汽車用PCB一直為廣大PCB人努力的方向,但受制程設備、原材料等多方面的限制,至今PCB世界百強企業仍在不斷探索降低PPm的方法。
2019-03-26 06:20:02

降低車用PCB缺陷率的6大方法

或一年進行整機保養、調校內部性能參數。追求“零缺陷”汽車用PCB一直為廣大PCB人努力的方向,但受制程設備、原材料等多方面的限制,至今PCB世界百強企業仍在不斷探索降低PPm的方法。
2018-09-19 16:13:12

CY8C5867LTI-LP025 SPI通信是否也需要使用SIO端口?

我正在使用 CY8C5867LTI-LP025。 我知道我需要使用 SIO 端口來使用 I2C、UART 等。 SPI通信是否也需要使用 SIO 端口?
2024-03-06 06:23:39

GaN和SiC區別

。碳化硅與Si相比,SiC具有: 1.導通電阻降低兩個數量級2.電源轉換系統中的功率損耗較少3.更高的熱導率和更高的溫度工作能力4.由于其物理特性固有的材料優勢而提高了性能 SiC在600 V和更高
2022-08-12 09:42:07

【論文】基于1.2kV全SiC功率模塊的輕型輔助電源

MOSFET整流器和逆變器的工作頻率。另外,LC濾波器的截止頻率也可以提高,這意味著LC濾波器的容量將會降低,從而降低ACL和ACC濾波電路的損耗和重量。表1APS產品的規格2、基于1.2kV全SiC
2017-05-10 11:32:57

【轉帖】華潤微碳化硅/SiC SBD的優勢及其在Boost PFC中的應用

如下圖所示,常溫25℃,采用SiC SBD開啟損耗略好,但125℃時采用SiFRD的開啟損耗為SiC SBD的兩倍。 圖:雙脈沖測試不同溫度開啟損耗對比 3、SiC SBD可以降低電流尖峰,改善系統
2023-10-07 10:12:26

為何使用 SiC MOSFET

。設計挑戰然而,SiC MOSFET 技術可能是一把雙刃劍,在帶來改進的同時,也帶來了設計挑戰。在諸多挑戰中,工程師必須確保:以最優方式驅動 SiC MOSFET,最大限度降低傳導和開關損耗。最大
2017-12-18 13:58:36

什么是碳化硅(SiC)?它有哪些用途?

什么是碳化硅(SiC)?它有哪些用途?碳化硅(SiC)的結構是如何構成的?
2021-06-18 08:32:43

從硅過渡到碳化硅,MOSFET的結構及性能優劣勢對比

/+15V)溫度175℃下進行HTGBR和HTRB實驗1000h無產品失效。除了常規AEC-Q101中要求的1000h小時實驗,派恩杰半導體對于柵極壽命經行了大量研究。由于SiC/SiO2界面存在比Si
2022-03-29 10:58:06

低功耗SiC二極管實現最高功率密度

都已充分證明其高品質水平。在基板處理、外延生長和制造方面的進步顯著地降低缺陷密度,我們將看到持續的工藝改進和更高的量。安森美半導體在整個工藝周期采用了獨特的方法,以確??蛻臬@得最高品質的產品。另一
2018-10-29 08:51:19

使用SiC-SBD的優勢

Si-FRD低。SiC-SBD的優勢從SiC-SBD的這些特征可以看出,替代Si-PND/FRD的優勢是得益于SiC-SBD的“高速性”。??1.trr高速,因此可大幅降低恢復損耗,實現高效率??2.同樣
2018-11-29 14:33:47

SiC功率模塊介紹

SiC功率模塊”量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低損耗。關于這一點,根據這之前介紹過的SiC-SBD和SiC-MOSFET的特點與性能,可以很容易理解
2018-11-27 16:38:04

SiC功率模塊的開關損耗

的IGBT模塊相比,具有1)可大大降低開關損耗、2)開關頻率越高總體損耗降低程度越顯著 這兩大優勢。下圖是1200V/300A的全SiC功率模塊BSM300D12P2E001與同等IGBT的比較。左圖
2018-11-27 16:37:30

內置SiC SBD的Hybrid IGBT 在FRD+IGBT的車載充電器案例中 開關損耗降低67%

內置SiC肖特基勢壘二極管的IGBT:RGWxx65C系列內置SiC SBD的Hybrid IGBT在FRD+IGBT的車載充電器案例中開關損耗降低67%關鍵詞* ? SiC肖特基勢壘二極管(SiC
2022-07-27 10:27:04

在功率二極管中損耗最小的SiC-SBD

的優勢。大幅降低開關損耗SiC-SBD與Si二極管相比,大幅改善了反向恢復時間trr。右側的圖表為SiC-SBD與Si-FRD(快速恢復二極管)的trr比較?;謴偷臅r間trr很短,二極管關斷時的反向電流
2018-12-04 10:26:52

如何降低汽車用PCB缺陷

六大方法降低汽車用PCB缺陷
2021-01-28 07:57:56

開關損耗更低,頻率更高,應用設備體積更小的全SiC功率模塊

ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全SiC”功率模塊量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低
2018-12-04 10:14:32

搭載SiC-MOSFET和SiC-SBD的功率模塊

電流和FRD的恢復電流引起的較大的開關損耗,通過改用SiC功率模塊可以明顯減少,因此具有以下效果:開關損耗的降低,可以帶來電源效率的改善和散熱部件的簡化(例:散熱片的小型化,水冷/強制風冷的自然風冷化
2019-03-12 03:43:18

新能源汽車SiC MOSFET芯片漏電紅外熱點定位+FIB解析

800萬的EMMI/OBIRCH在顯示SiC芯片漏電點上的效果一樣,但是價格卻大大降低。對熱點進行FIB切割分析:我們觀察到此發熱點金屬化薄膜鋁條被熔斷。存在缺陷或性能不佳的半導體器件通常會表現出異常
2018-11-02 16:25:31

溝槽結構SiC-MOSFET與實際產品

結構SiC-MOSFET的量產。這就是ROHM的第三代SiC-MOSFET。溝槽結構在Si-MOSFET中已被廣為采用,在SiC-MOSFET中由于溝槽結構有利于降低導通電阻也備受關注。然而,普通的單
2018-12-05 10:04:41

淺析SiC-MOSFET

SiC-MOSFET 是碳化硅電力電子器件研究中最受關注的器件。成果比較突出的就是美國的Cree公司和日本的ROHM公司。在國內雖有幾家在持續投入,但還處于開發階段, 且技術尚不完全成熟。從國內
2019-09-17 09:05:05

淺析SiC功率器件SiC SBD

設計得低,開啟電壓也可以做得低一些,但是這也將導致反向偏壓時的漏電流增大。ROHM的第二代SBD通過改進制造工藝,成功地使漏電流和恢復性能保持與舊產品相等,而開啟電壓降低了約0.15V。SiC
2019-05-07 06:21:51

深愛一級代理SIC953xD系列 /SIC全系列支持

深愛全系列支持SIC9531DSIC9532DSIC9533DSIC9534DSIC9535DSIC9536DSIC9537DSIC9538DSIC9539DSIC9942B/DSIC9943B
2021-11-13 14:58:25

深愛代理SIC953XD..SIC9531D.SIC9532D.SIC9533D.SIC9534D.SIC9535D

低功率因素方案SIC953XD系列:TYPESPFMOSFETPackage **范圍SIC9531D 0.514Ω500VSOP7
2021-09-07 17:39:06

碳化硅SiC技術導入應用的最大痛點

和可再生能源,如果沒有冷卻組件,效率也會更好,而且有助于降低成本、尺寸和環境負擔。  SiC仍處于進化曲線的起點,它還能走多遠呢?系統工程師急切地等待著發現,但我們可以根據SiC如何模仿硅器件的發展做出一些
2023-02-27 14:28:47

第三代半導體材料盛行,GaN與SiC如何撬動新型功率器件

粗糙散射在SiC反型層中起主要作用;反之,溝道散射以庫侖散射為主,此時高密度的界面態電荷將成為降低溝道遷移率的主要因素?! ?.總結通過學習這兩款新型的功率器件,不僅在設計上,更取得了實質性的效果。來源
2017-06-16 10:37:22

羅姆SiC-SBD替代Si-PND/Si-FRD有什么優勢

改善,并進一步降低了第2代達成的低VF。SiC-SBD、Si?SBD、Si-PND的特征SiC-SBD為形成肖特基勢壘,將半導體SiC與金屬相接合(肖特基結)。結構與Si肖特基勢壘二極管基本相同,僅
2019-07-10 04:20:13

羅姆成功實現SiC-SBD與SiC-MOSFET的一體化封裝

低,可靠性高,在各種應用中非常有助于設備實現更低功耗和小型化。本產品于世界首次※成功實現SiC-SBD與SiC-MOSFET的一體化封裝。內部二極管的正向電壓(VF)降低70%以上,實現更低損耗的同時
2019-03-18 23:16:12

車用SiC元件討論

25度上升到攝氏200度時,閾值電壓值(Vth)降低了600mV,擊穿電壓(BV)上升了約50V,不難看出,SiC MOSFET性能明顯高于矽MOSFET。圖4 : SiC SCT30N120中
2019-06-27 04:20:26

采用第3代SiC-MOSFET,不斷擴充產品陣容

ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全SiC”功率模塊量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低
2018-12-04 10:11:50

表面氫化降低SiC/金屬接觸間界面態密度的機理

研究了SiC表面氫化降低界面態密度的機理。采用緩慢氧化、稀釋的HF刻蝕、沸水浸泡的表面氫化處理方法,降低SiC表面態密度。該方法用于SiC器件的表面處理,在100℃以下制備了理想
2009-05-07 20:31:4435

SiC氣體傳感器

SiC 肖特基二極管氣體傳感器可以廣泛應用于檢測氣體排放物和氣體泄露。通過采用PdCr 合金,可以提高Pd/ SiC 氣體傳感器的靈敏度。同時,在Pd 層和SiC 之間引入SnO2 作為界面層也是提高
2009-06-22 13:49:3416

ITO玻璃技術之SiO2阻擋膜層規格

ITO玻璃技術之SiO2阻擋膜層規格  SiO2 阻擋膜層規格
2008-10-25 16:04:251408

六大方法降低汽車用PCB缺陷

六大方法降低汽車用PCB缺陷率 前言 :汽車電子市場是繼電腦、通訊之后PCB的第三大應用領域。隨著汽車從傳統意義上的機械產品,逐步演化、發展成為
2009-11-16 08:57:23490

鍍復SiO2膜的電容器介質膜

鍍復SiO2膜的電容器介質膜     成功一種能在幾百小時連續沉積SiO2膜的新穎電子束蒸發裝置,獲國家發明專利,在此基礎上
2009-12-08 09:03:32702

什么是Prescott/SiO2F?

什么是Prescott/SiO2F? 這是Intel最新的CPU核心,目前還只有Pentium 4而沒有低端的賽揚采用,其與Northwood最大的區別是采用了0.09um制造工藝
2010-02-04 11:28:54394

SiC,SiC是什么意思

SiC,SiC是什么意思 SiC是一種Ⅳ-Ⅳ族化合物半導體材料,具有多種同素異構類型。其典型結構可分為兩類:一類是閃鋅礦結構的立方SiC晶型,稱為3C
2010-03-04 13:25:266541

SiC產業鏈都包含哪些環節?#硬聲創作季

SiC
電子學習發布于 2022-11-20 21:17:16

SiC器件的核心挑戰#硬聲創作季

SiC
電子學習發布于 2022-11-20 21:18:34

14.1 SiC基本性質(上)_clip001

SiC
jf_75936199發布于 2023-06-24 19:12:34

14.1 SiC基本性質(上)_clip002

SiC
jf_75936199發布于 2023-06-24 19:13:16

14.1 SiC基本性質(下)

SiC
jf_75936199發布于 2023-06-24 19:14:08

14.2 SiC晶體結構和能帶

SiC
jf_75936199發布于 2023-06-24 19:22:10

何謂全SiC功率模塊?

羅姆在全球率先實現了搭載羅姆生產的SiC-MOSFET和SiC-SBD的“全SiC功率模塊”量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低損耗。
2018-05-17 09:33:1313514

SiC器件中SiC材料的物性和特征,功率器件的特征,SiC MOSFET特征概述

各種多種晶型,它們的物性值也各不相同。其中,4H-SiC最合適用于功率器件制作。另外,SiC是唯一能夠熱氧化形成SiO2的化合物半導體,所以適合制備MOS型功率器件。
2018-07-15 11:05:419257

采用SiC材料元器件的特性結構介紹

各種多種晶型,它們的物性值也各不相同。其中,4H-SiC最合適用于功率器件制作。另外,SiC是唯一能夠熱氧化形成SiO2的化合物半導體,所以適合制備MOS型功率器件。
2018-09-29 09:08:008115

創新工藝可以消除SiC襯底中的缺陷

日本關西學院大學和豐田通商于3月1日宣布,他們已開發出“動態AGE-ing”技術,這是一種表面納米控制工藝技術,可以消除使SiC襯底上的半導體性能變差的缺陷。
2021-03-06 10:20:083028

華秋DFM專業設計分析軟件-一鍵監查降低設計缺陷

華秋DFM專業設計分析軟件-一鍵監查降低設計缺陷
2021-07-19 19:13:050

華秋DFM專業設計分析軟件-一鍵檢查降低設計缺陷

華秋DFM專業設計分析軟件-一鍵檢查降低設計缺陷
2021-07-23 15:05:110

在APT32F102中使用SIO的應用范例

本文介紹了在APT32F102中使用SIO的應用范例。,SIO 模塊是一個串行輸入輸出的控制器,可以模擬多種串行通信協議,支持雙向數據傳輸。 由 D0, D1, DL, DH 四個對象組合編碼,可以用于 MCU 外圍硬件接口不夠,但又需要和其它設 備通信或者器件自定協議的場合。
2022-06-02 14:44:235

降低 SiC 電阻之路

本文基于PGC 咨詢公司進行的分析,研究了當今的 650-V 和 1,200-V SiC MOSFET,揭示了這些問題,包括柵極氧化物可靠性的優化,這有助于降低比導通電阻,降低碳化硅成本。
2022-07-29 17:19:05952

如何消除SiC MOSFET——柵極電路設計中的錯誤及其對穩健性的影響

為什么需要關注 SiC MOSFET 柵極?盡管具有傳統的 SiO 2柵極氧化物,但該氧化物的性能比傳統 Si 基半導體中的經典 Si-SiO 2界面更差。這是由于在SiC 的 Si 終止面上生長
2022-08-04 09:23:041129

簡要介紹篩選后器件經過馬拉松(Marathon)實驗的典型結果

目前針對SiC的研究已相當深入,仍有不少人關注SiC材料的柵氧能力,本文對此再做一個簡要介紹。如圖1所示,相較于Si基材料,SiCSiO2柵氧層界面缺陷密度更高,SiC早期失效、非本征失效(虛線)發生的概率要比Si材料的高三四個數量級
2022-08-05 11:21:311220

利用缺陷信息數據庫探索界面工程,助力GaN基肖特基勢壘二極管的研究

阻等性能,同時影響器件的可靠性。近期,天津賽米卡爾科技有限公司技術團隊開發出了完備的缺陷信息數據庫,并對GaN基TMBS的界面特性進行了系統性研究,深入剖析了界面缺陷對GaN基TMBS器件性能的影響,并完善了圖1所展示的肖特基接觸界面附近存在的
2022-10-08 09:39:33612

搭載了SiC-MOSFET/SiC-SBD的全SiC功率模塊介紹

ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全SiC”功率模塊量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低損耗。
2023-02-10 09:41:081333

SiC MOSFET和SiC IGBT的區別

  在SiC MOSFET的開發與應用方面,與相同功率等級的Si MOSFET相比,SiC MOSFET導通電阻、開關損耗大幅降低,適用于更高的工作頻率,另由于其高溫工作特性,大大提高了高溫穩定性。
2023-02-12 15:29:032102

R課堂 | 使用新一代SiC MOSFET降低損耗實證 —前言—

關鍵要點 ? SiC MOSFET因其在降低功率轉換損耗方面的出色表現而備受關注。 ? 以DC-DC轉換器和EV應用為例,介紹使用新一代(第4代)SiC MOSFET所帶來的優勢–降低
2023-02-15 23:45:05343

破解SiC MOS難題,新技術減少50%碳殘留

近日,韓國企業EQ TechPlus宣布,他們開發了一種下一代氧化膜沉積設備,用于大規模生產SiC功率半導體,與采用傳統高溫熱氧化設備相比,該設備可以將SiC界面碳含量降低約50%。
2023-06-13 16:46:14452

6.3.6 不同晶面上的氧化硅/SiC 界面特性∈《碳化硅技術基本原理——生長、表征、器件和應用》

6.3.6不同晶面上的氧化硅/SiC界面特性6.3氧化及氧化硅/SiC界面特性第6章碳化硅器件工藝《碳化硅技術基本原理——生長、表征、器件和應用》往期內容:6.3.5.5界面的不穩定性∈《碳化硅技術
2022-01-21 09:35:56706

5.3.1.1 本征缺陷∈《碳化硅技術基本原理——生長、表征、器件和應用》

5.3.1.1本征缺陷5.3.1SiC中的主要深能級缺陷5.3SiC中的點缺陷第5章碳化硅的缺陷及表征技術《碳化硅技術基本原理——生長、表征、器件和應用》往期內容:5.2.3擴展缺陷SiC器件性能
2022-01-06 09:27:16693

5.2.3 擴展缺陷SiC器件性能的影響∈《碳化硅技術基本原理——生長、表征、器件和應用》

5.2.3擴展缺陷SiC器件性能的影響5.2SiC的擴展缺陷第5章碳化硅的缺陷及表征技術《碳化硅技術基本原理——生長、表征、器件和應用》往期內容:5.2.1SiC主要的擴展缺陷&5.2.2
2022-01-06 09:25:55621

淺析SiC MOS新技術:溝道電阻可降85%

我們知道,SiC MOSFET現階段最“頭疼”的問題就是柵氧可靠性引發的導通電阻和閾值電壓等問題,最近,日本東北大學提出了一項新的外延生長技術,據說可以將柵氧界面缺陷降低99.5%,溝道電阻可以降低85.71%,整體SiC MOSFET損耗可以降低30%。
2023-10-11 12:26:49612

照明的綠色革命--降低制造過程中的缺陷

電子發燒友網站提供《照明的綠色革命--降低制造過程中的缺陷率.pdf》資料免費下載
2023-11-02 09:55:250

使用SiC MOSFET時如何盡量降低電磁干擾和開關損耗

使用SiC MOSFET時如何盡量降低電磁干擾和開關損耗
2023-11-23 09:08:34333

揭示界面導電網絡對鋰離子電池SiO基負極快充性能影響的基本機理

高導電性的界面可以改善一氧化硅(SiO)的快充性能,但是目前為止,界面導電網絡質量如何影響輸運行為、力學穩定性,以及微觀結構與性能之間的量化關系的潛在機制尚未得到系統的研究和理解。
2023-12-12 09:21:15321

4H-SiC缺陷概述

4H-SiC概述(生長、特性、應用)、Bulk及外延層缺陷、光致發光/拉曼光譜法/DLTS/μ-PCD/KOH熔融/光學顯微鏡,TEM,SEM/散射光等表征方法。
2023-12-28 10:38:03487

已全部加載完成

主站蜘蛛池模板: 6080yy 久久 亚洲 日本| 小女生RAPPER入口| 秋霞久久久久久一区二区| 欧美牲交视频免费观看K8经典| 明星三级电影| 日本xxxxx按摩19| 日韩欧美一级| 亚洲成年男人的天堂网| 一本到道免费线观看| 最新2017年韩国伦理片在线| 99热久久爱五月天婷婷| 动漫女生的逼| 国产亚洲欧洲日韩在线观看 | 曰产无码久久久久久精品| 中文字幕在线视频观看| yellow在线观看免费高清的日本| 国产AV亚洲国产AV麻豆| 娇妻让壮男弄的流白浆| 秘密教学26我们在做一次吧免费| 日本精品久久久久中文字幕 1 | 亚洲 日韩 国产 制服 在线| 一区二区三区无码高清视频| jk制服喷水| 国产精品免费小视频| 久久精品嫩草影院免费看| 欧美日韩无套内射另类| 亚洲 日韩 色 图网站| 18禁裸乳无遮挡免费网站| 村上里沙快播| 久久re6热在线视频| 啪啪后入内射日韩| 亚洲精品第二页| 99精品在线播放| 国产香蕉九九久久精品免费| 男生在床上脱美女 胸| 午夜免费体验30分| 最新影音先锋av资源台| 国产精品点击进入在线影院高清| 久久综合香蕉久久久久久久| 少妇的肉体AA片免费观看| 最近日本MV字幕免费观看视频|