近年來,隨著電子技術的發展,對各種辦公自動化設備,家用電器,計算機的需求逐年增加。這些設備的內部,都需要一個將市電轉換為直流的電源部分。在這個轉換過程中,會產生大量的諧波電流,使電力系統遭受污染。作為限制標準,IEC發布了IEC1000?3?2;歐美日各國也頒布實施了各自的標準。為此諧波電流的抑制及功率因數校正是電源設計者的一個重要的課題。
2高次諧波及功率因數校正
一般開關電源的輸入整流電路為圖1所示:
市電經整流后對電容充電,其輸入電流波形為不連續的脈沖,如圖2所示。這種電流除了基波分量外,還含有大量的諧波,其有效值I為:I=(1)
式中:I1,I2,…In,分別表示輸入電流的基波分量與各次諧波分量。
諧波電流使電力系統的電壓波形發生畸變,我們將各次諧波有效值與基波有效值的比稱之為總諧波畸變THD(TotalHarmonicDistortion):THD=(2)
用來衡量電網的污染程度。脈沖狀電流使正弦電壓波形發生畸變,見圖3的波峰處。它對自身及同一系統的其它電子設備產生惡劣的影響,如:
——引起電子設備的誤操作,如空調停止工作等;
——引起電話網噪音;
——引起照明設備的障礙,如熒光燈閃滅;
——造成變電站的電容,扼流圈的過熱、燒損。
功率因數定義為PF=有效功率/視在功率,是指被有效利用的功率的百分比。沒有被利用的無效功率則在電網與電源設備之間往返流動,不僅增加線路損耗,而且成為污染源。
設電容輸入型電路的輸入電壓e為:
e(t)=Em·sinω0t(3)
圖1電容輸入型電路
圖2電容輸入型電路的輸入電流,5A/DIV
圖3輸入電壓波形發生畸變
入電流i為:i(t)=Imk·sin(kω0t)(4)
則有效功率Pac為:
Pac=e(t)·i(t)dt=Em·Im1/2=E·I1而視在功率Pap為:
Pap=E·I因此:
PF=Pac/Pap=I1/I=(5)
電流波形為圖2的電源功率因數只有62.4%。由式(2)、(5)可見功率因數與總諧波畸變THD的關系為:PF=1/(6)
從式(2)、式(5)可見,抑制諧波分量即可達到減小THD,提高功率因數的目的。因此可以說諧波的抑制電路即功率因數校正電路(實際上有所區別)。
3功率因數校正的實現方法
綜上所述,只要設法抑制輸入電流中的諧波分量,通過電路方法,將輸入電流波形校正為或使無限接近正弦波,即可實現功率因數校正。
有很多的電路方式可以實現這一目的,比如說在電路中加入一個大電感(見圖4),使整流管的導通角變大。這種方法雖然簡單,價格低,但存在體積大,重量大,且效果不好(PF小于80%)等缺點。
下面以東芝公司的功率因數校正控制ICTA8310F為例,介紹一種有源功率因數校正方法。電路原理圖見圖5。
3.1主電路
由一個全橋整流器和升壓型BOOST變換器構成,雖然其它的變換器BUCK,FLYBACK等也可以實現這一功能,但是由于BOOST變換器具有輸出電容小斷電保持時間長,可實現WorldWild電壓輸入,及輸入電流連續EMI小等諸多優點,大部分功率因數校正都采用它來作為主電路。
Vout=Vin/(1-D)(7)
式中:Vin為輸入電壓的有效值;
D為開關管FET的占空比。
主電路參數為:輸入178~264Va.c.;
輸出380Vd.c.;
最大輸出功率608W。
為圖5的虛線框中部分,主要包含一個乘法器MPX,電流誤差放大器EI及PWM比較器。三者協調工作,將系統的輸入電流校正為正弦波,實現諧波的抑制。原理如下:
(1)乘法器MPX包含2個輸入,一個是通過電阻Ra檢測輸入電壓,作為基準的正弦波信號。只要做到使輸入電流波形與此一致,即可達到目的。乘法器的另一個輸入是電壓誤差放大器EV的輸出端,作為輸出穩壓的控制信號,見下述(3)。乘法器為電流輸入型,不易受噪音干擾;
圖4扼流圈輸入型電路
圖5有源功率因數校正電路原理圖(原圖,未做格式處理)
圖6電感線圈L的電流波形示意圖
圖7功率因數改善后的輸入電流波形,2A/DIV
(2)乘法器的輸出電流信號為基準正弦波電流與電壓誤差放大器EV輸出的積,它通過電阻Rb,產生一個信號電壓。該信號電壓與由電阻Rc檢測到的主電路電流的信號電壓之差輸入到電流誤差放大器EI,而EI與PWM比較器,驅動器DRIVER,主電路及Ra形成一個閉環控制。使兩者的差無限接近于零。也就是說電阻Rb上的信號電壓與電阻Rc上的信號電壓相同,以達到電源的輸入電流波形無限接近于基準正弦波的目的。
為了更容易理解,可放大示波器X軸量程,觀察輸入電流IL的波形,如圖6所示,通過PWM控制,改變開關的占空比,來實現對輸入電流的校正;
(3)一個PFC里面有2個閉環控制回路,其一就是上述的(1)、(2),我們稱之為電流控制環。它實現功率因數校正。其二是由電壓誤差放大器EV,乘法器MPX,EI,PWM比較器,DRIVER,主電路及Ra構成的電壓控制環,它使輸出電壓穩定在380Vd.c.。
主要設計參數有:開關頻率f=95kHz;
功率因數PF=99.2%;
效率η=95.4%。
EMC:符合VCCI?A,FCC?A,VDE?A,DOC?A,及EN55022。
實現功率因數校正后的電源,其輸入電流的波形,見圖7。功率因數達到99.2%,THD只有0.127。與圖2比較,電流波形已得到明顯的校正。
3.3設計時的注意事項
扼流線圈的選取會影響到輸出紋波電流的大小,及其它電路設計參數。應保證它有足夠大的飽和電流,而其值L為:L=·Vmin2/(2··Pout·f)(8)
式中:Vmin為最小輸入電壓的峰值; Vout為輸出電壓; ΔIL為扼流線圈上的紋波電流峰峰值; IPmax為輸入電流的峰值; Pout為輸出功率; f為電源開關頻率。
用來檢測電流的主電路上的Rc應當選用額定功率大的電阻,且阻值應盡量小,一般在幾十mΩ級。
IC的2腳,4腳間及12腳,13腳間接入RC相位補償網絡,合適的選值可以使系統更穩定,并可減小輸出電壓紋波。
4結語
作為限制諧波電流的對策而導入的功率因數校正,對其小型化,高效率,低價格,噪音小的要求將會越來越苛刻,特別是對其低噪音化在國外已經成為一個重要的課題,利用諧振技術的PFC控制IC也已經得到了開發和應用,如UNITRODE公司的UC3852等。改善和創新永無止境。
評論
查看更多