電流驅動同步整流反激變換器的研究 摘要:分析了工作在恒頻DCM方式下的反激同步整流變換器。為了提高電路的效率,采用了一種能量反饋的電流型驅動電路來控制同步整流管。分析了該驅動電路的工作原理,并給出了設計公式。實驗結果表明該方法提高了反激變換器效率的有效性。 關鍵詞:反激;同步整流;能量反饋;電流驅動ResearchonaFlybackConverterUsing 1引言 隨著數字處理電路(data?processingcircuits)的工作電壓的持續下降,保持電路的高效率受到了很大的技術挑戰。這是由于在低壓電源中,二極管的正向壓降引起的損耗占了電路總損耗的50%以上。由于MOSFET同步整流管SR(synchronousrectifiers)的低導通電阻,在大量的電路中都用來代替效率低的肖特基二極管,特別是在低壓電源中[1]。 反激是一種廣泛應用于小功率的拓撲,由于只有一個磁性元件,而具有體積小,成本低的優點。但是,目前同步整流在正激電路中的應用比較多,而在反激電路中的應用卻很少。這是由于正激電路比較適合大電流輸出,能夠更好地體現同步整流的優勢;另外一個原因是可采用簡單的自驅動,而反激電路原邊開關和副邊開關理論上會有共通。但是,如果考慮到實際電路中變壓器的漏感,則這種情況是不會產生的,所以當輸出電流不是很大時,采用反激電路還是值得考慮的。本文將對工作在DCM方式下的同步反激電路進行分析。 同步整流中最重要的一個問題是同步管的驅動設計。同步管的驅動大體上可以分為自驅動(self?driv en)和他驅動(control?driven),本文介紹了一種能量反饋的自驅動電路。 2同步整流在反激電路中的應用 帶有同步整流的反激電路如圖1所示。一般來說,電路可以工作在CCM或DCM方式,開關頻率可以是恒頻(CF),也可以是變頻(VF)。下面主要對工作在恒頻DCM方式的工作過程進行分析。主要波形如圖2所示。在DCM方式下工作時,原邊開關開通時儲存在變壓器勵磁電感上的能量在開關關斷時全部傳送到副邊。從圖2可以看出,在原邊開關開通之前,副邊電流已經為零了。由于MOSFET具有雙向導電特性,所以為了防止副邊電流逆流,必須在其到達零點時(即t3)或很短的一小段時間里關斷SR。因此,DCM方式下工作的反激電路必須要有一個零電流檢測環節來控制電路。 在t3時刻SR關斷以后,勵磁電感Lm和電容Ceq=Csw+進行諧振,諧振阻抗為: Zm=(1) 直到t5時刻原邊開關開通為止。同時,由于VDS的存在,原邊開關開通時的開通損耗為:
圖1帶同步整流的反激電路
圖2DCM方式下的反激主要波形
圖3傳統的電流型驅動電路 Pturnon(SW)=CSWVon2fs(2) 其中:Vin-nVo?Von?Vin+nV; Vo為輸出電壓; fs為開關頻率。 也就是說,當原邊開關在諧振電壓的峰值開通時,電路的效率最低,相反,在谷值開通時,電路的效率最高。因為諧振的時間tDCM=t5-t4會隨著輸入電壓的變化而變化,即Von會隨著輸入電壓的變化而變化,從而電路的效率會隨著輸入電壓的變化而發生擾動。另一方面,由于SR的輸出電容CSW比一般的肖特基二極管要大,由式(1)可知,采用同步整流的電路的諧振電流要比采用肖特基二極管的電路大,這個電流流過SR,從而產生比較大的損耗。所以,如果電路的器件或者參數設計不當,用SR來代替二極管不一定能提高效率。 這個電路的另一種工作方式VFDCM就是基于這種思想產生的。t3時刻SR關斷后,在VDS第一次到達谷底時(見圖2的t4時刻)開通原邊開關,就可以達到減小開關損耗的目的,可以從整體上提高電路效率。 3同步整流管的驅動 SR的驅動是同步整流電路的一個重要問題。有的電路可以采用自驅動,典型的電路比如采用有源箝位的正激電路,這種驅動由于是利用變壓器副邊的電壓來驅動SR,不必另加電路,即節約了成本,又提高了電路的效率。而有的時候為了能夠更靈活地控制SR,則可以采用他驅動。 如前所述,只要采用零電流檢測技術,反激電路也是可以采用自驅動。傳統的電流驅動電路如圖3所示。這種驅動電路是消耗能量的,為了減小這種損耗,電流檢測線圈的壓降必須盡可能低。實際電路中一般要達到整流管壓降的1/10。比如說,在圖3中,如果VSR=0.1V,則VCS要在0.01V左右。而SR的驅動電壓至少要5V,這樣會導致N2和N1的匝數比非常大。這不僅使得電流檢測裝置非常笨重,而且會增大漏感,影響到同步管的迅速開通。這也是這種電路不適合在高頻下工作的原因。 為了解決電流檢測電路所引起的損耗問題,提出了具有能量反饋(energyrecovery)的電流檢測電路[2],如圖4所示。
這個電路增加了一個能量反饋部分,通過N3和N4的作用,把電流檢測的能量反饋到一個直流源里,這個直流源可以是電路中的任一直流電壓,一般用輸出電壓來代替。有了這個電路后,VCS可以設計得比VSR還高,而不會引入額外的損耗。這樣就解決了傳統電流驅動電路匝數比大的缺點。 電路的基本工作過程如下,當電流從SR的源極流向漏極時,線圈N1上也流過同方向的電流,折算到線圈N2上的電流給SR的門極電容充電,當門極電壓VGS折算到N3等于Vo時,二級管D1導通并且把能量從N1傳遞到直流源Vo。適當設計N2和N3的匝數比,N2上的電壓可以用來驅動SR,只要SR上的電流持續流過N1,直流源Vo保持不變,SR的驅動電壓就不會隨著輸入電壓的變化而變化。當流經SR的電流降到零并且要反向流時,二級管D1關斷,D2開通進行磁復位。SR的門極電壓為負,從而關斷。因此沒有反向電流流過SR。在這種電流驅動電路中,SR的特性就像一個理想的二極管一樣。
(a)Vin=40V時VDS(SW)與ipri波形?????? (b)Vin=40V時VSR與isec波形
(c)Vin=60V時VDS(SW)與ipri波形?????? (d)Vin=60V時VSR與isec波形 圖5實驗波形
如上所述,流過N1上的電流除了折算到N2給門極電容充電外,還要有額外的電流來導通D1,這樣才可以把N2的電壓箝住。從另一個角度來說,也就是流過N2的勵磁電流不能太大,這可以通過適當設計勵磁電感來實現[2]: Lm?(3) 式中:D為SR的占空比; Ts為開關周期; ISR-P為流過SR的電流峰值; Vo為輸出電壓。 文獻[2]對這個電路的穩態過程,瞬態過程進行了詳細的分析,考慮到電路的具體參數以及電路的損耗,電流驅動電路的匝數比可以由式(4)~式(6)決定: Vg(on)=Vo(4) D≤(5)=(6) 式中:Vg(on)為SR的柵極驅動電壓; N1~N4為對應線圈的匝數; VF?D1為二極管D1的正向導通壓降; Vth為SR的柵極門檻電壓; VF?BD為SR的體二極管正向導通壓降。 4實驗結果 設計了一個開關頻率為100kHz的反激電路,其輸入電壓為40~60V,輸出電壓5V,輸出電流2.5A。同步整流管采用STP40NF03L,電壓30V,電流40A,導通電阻<0.022Ω,柵極電容約為750pF。電流驅動變壓器的匝數比為2:58:29:25(N1~N4)。圖5為實驗波形。圖5(a)是輸入電壓為40V時原邊開關的漏源極電壓和流過開關的電流波形。圖5(b)是輸入電壓為40V時SR的驅動電壓和流過SR的電流波形。圖5(c)和圖5(d)是輸入電壓為60V時相應的波形。 5結語 同步整流在反激電路中的應用雖然不多,但是當輸出電流不大時,反激電路還是一個不錯的選擇。同時,采用能量反饋驅動電路來控制反激同步整流管,提高了電路的效率。這種驅動電路還具有適合于各種拓撲等優點。 |
電流驅動同步整流反激變換器的研究
- 變換器(108177)
- 反激(16059)
相關推薦
同步整流反激變換器應用電路詳解 —電路圖天天讀(119)
反激變換器應用廣泛,采用同步整流技術能夠很好的提高反激變換器效率,同時為使同步整流管的驅動電路簡單,采用分立元件構成驅動電路。
2015-03-12 11:21:5814487
詳解同步整流技術在正激變換器中的應用
近年來隨著電源技術的發展,同步整流技術正在低壓、大電流輸出的dc/dc變換器中迅速推廣應用。##外驅同步整流。##本文采用外驅同步整流的方法,制作了一臺高壓輸入低壓輸出的電源模塊原理樣機,另外本文
2014-08-08 14:07:3910839
反激變換器
大家好,我現在要設計一個電源,輸入范圍18-72,輸出24,300w功率,實現輸入輸出全隔離。要實現升降壓,所以想選擇反激變換器,現在有幾個問題1、反激變換器書上介紹只有在CCM模式下為升降壓模式
2016-12-04 18:31:07
反激變換器交叉調整率改善措施
反激變換器在多路輸出電源應用場合成本優勢明顯,因而廣泛應用于家電、機頂盒、儀器儀表等電子產品的內置電源。由于變壓器漏感等參數引起的交叉調整率問題已成為多路輸出電源的設計難點之一,本期芯朋微技術團隊
2017-08-07 10:32:18
反激變換器原理
導通時變壓器儲存能量,負載電流由輸出濾波電容提供;開關管關斷時,變壓器將儲存的能量傳送到負載和輸出濾波電容,以補償電容單獨提供負載電流時消耗的能量。下面祥細討論此類拓樸的優缺點。反激變換器的主要優點
2009-11-14 11:36:44
反激變換器有什么優點?
反激變換電路由于具有拓撲簡單,輸入輸出電氣隔離,升/降壓范圍廣,多路輸出負載自動均衡等優點,而廣泛用于多路輸出機內電源中。在反激變換器中,變壓器起著電感和變壓器的雙重作用,由于變壓器磁芯處于直流偏磁狀態,為防磁飽和要加入氣隙,漏感較大。
2019-10-08 14:26:45
反激變換器的計算
《開關電源設計(第三版)》反激變換器斷續模式的計算,先是根據伏秒數守恒和20%死區時間計算出Ton,然后根據能量守恒在考慮效率的情況下計算出電感L,換句話說電感跟效率有關,但如果計算出Ton后先算
2018-09-17 20:36:00
反激變換器的設計步驟
一般取0.2 即可。一般在整流后的最小電壓Vinmin_DC 處設計反激變換器,可由Cbulk 計算Vinmin_DC:3. Step3:確定最大占空比Dmax反激變換器有兩種運行模式:電感電流
2020-11-27 15:17:32
反激變換器的輔助繞組電壓會隨著空載和帶載而變化
我的反激變換器,在輸出帶負載的情況下,輔助繞組VCC的電壓為12V,可是當空載的時候,輔助繞組VCC的電壓只有10V了,請問這是什么原因呢?
2014-05-26 14:01:23
反激變換器的閉環控制
=oxh_wx3、【周啟全老師】開關電源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx復習電力電子技術的時候想起來老師說過boost和反激變換器只能采用雙環控制,不能用單環,原因上課講過但是沒認真聽,所以來請教一下各位,謝謝大家了
2019-06-26 23:42:07
反激變換器設計中常見的問題與解決措施
本帖最后由 wulei00916 于 2014-6-20 22:52 編輯
本PDF文件,詳細介紹了設計反激變換器時,經常會遇到的幾種疑難問題,并給出了解決措施
2014-06-20 22:52:27
反激變換器設計注意事項
,迫使繞組的電壓極性反轉。電流現在從二次繞組流出,以正點電壓逆轉繞組電壓的極性。D1傳導,將電流傳送到輸出負載,并為輸出電容器充電。圖160W CCM反激變換器原理圖點擊放大額外的變壓器繞組可以添加
2020-01-09 11:25:10
反激變換器設計,系統輸入電壓問題
我看到一個反激變換器設計中,系統輸入規格如下所示:市電輸入電壓(單位V):V_min=85V_nom=220V_max=265我國的市電電壓220v,電壓波動如果按正負20%考慮,那么V_min
2023-02-07 14:52:55
PFC+反激變換器中變壓器的設計問題
前級PFC輸出電壓400V,后面用反激變換器來實現12V/400mA的輸出,反激變壓器如何進行設計呢?看了好多帖子,理解的都不是很清楚。希望有高手可以分享一個案例
2018-05-17 20:16:10
【轉】準諧振軟開關雙管反激變換器
一種準諧振軟開關雙管反激變換器。該變換器具有雙管反激變換器的優點,所有開關管電壓應力鉗位在輸入電壓,因此,可選取低電壓等級、低導通電阻MOSFET以提高變換器的效率、降低成本。利用諧振電感與隔直電容
2018-08-25 21:09:01
一步步為你解析反激變換器設計
一般取0.2 即可。一般在整流后的最小電壓Vinmin_DC 處設計反激變換器,可由Cbulk 計算Vinmin_DC:3. Step3:確定最大占空比Dmax反激變換器有兩種運行模式:電感電流
2021-07-02 06:00:00
為什么在反激變換器中使用BJT?
控制器的基本驅動帶來了更大的壓力。當為這個設計選擇一個反激控制器時,要確保它是為了控制和驅動適配器應用程序中的BJT而設計的。UCC 28722反激控制器是針對主開關采用BJT控制準諧振/不連續反激變換器
2020-01-09 11:29:00
伊凡微 AP402B緊湊的二次側同步整流器控制器和高性能反激變換器驅動器
伊凡微 AP402BAP402B是一個緊湊的二次側同步整流器控制器和高性能反激變換器驅動器。不需要輔助繞組的快速關斷整流器,兼容CCM, DCM, QR 模式。SOT23-6L 封裝。 廣泛用于電源適配器, TYPE-C PD 充電器。詳見附件規格書。
2019-11-15 14:27:32
傳統的硬開關反激變換器應用設計
快充及電源適配器通常采用傳統的反激變換器結構,隨著快充及PD適配器的體積進一步減小、功率密度進一步提高以及對于高效率的要求,傳統的硬開關反激變換器技術受到很多限制。采用軟開關技術工作在更高的頻率
2018-06-12 09:44:41
雙管正激變換器有什么優點?
由于正激變換器的輸出功率不像反激變換器那樣受變壓器儲能的限制,因此輸出功率較反激變換器大,但是正激變換器的開關電壓應力高,為兩倍輸入電壓,有時甚至超過兩倍輸入電壓,過高的開關電壓應力成為限制正激變換器容量繼續增加的一個關鍵因素。
2019-09-17 09:02:28
圖文實例講解:反激變換器的設計步驟
/3;由公式 41 可知,如果不加斜坡補償(ma=0),當占空比超過 50%時,電流環震蕩,表現為驅動大小波,即次諧波震蕩。因此,設計 CCM 模式反激變換器時,需加斜坡補償。對 DCM 模式反激
2020-07-11 08:00:00
大牛總結的反激變換器設計筆記
開關電源的設計是一份非常耗時費力的苦差事,需要不斷地修正多個設計變量,直到性能達到設計目標為止。本文step-by-step 介紹反激變換器的設計步驟,并以一個6.5W 隔離雙路輸出的反激變換器
2021-09-16 10:22:50
討論:DCM反激變換器輸出濾波電容發熱的原因
排除周圍發熱器件的影響,我現在想到的DCM反激變換器輸出濾波電容自發熱的原因有:1。輸出整流二極管整流后的電壓半波幅值過高;2。電容的紋波電流RMS值大,同時電容的ESR也大,造成ESR的損耗過大
2019-06-22 18:13:27
設計反激變換器 PCB 設計指導
PCB 設計時應當注意的事項,并采用軟件仿真的方式驗證了設計的合理性。同時,在附錄部分,分別給出了峰值電流模式反激在CCM 模式和DCM 模式工作條件下的功率級傳遞函數。設計反激變換器
2020-07-23 07:16:09
設計反激變換器 仿真驗證
型控制器UC3843(與NCP1015 控制原理類似),搭建反激變換器。其中,變壓器和環路補償參數均采用上文的范例給出的計算參數。仿真測試條件:低壓輸入(90VAC,雙路滿載)1.原理圖圖17 仿真原理圖
2020-07-22 07:39:08
設計反激變換器步驟 Step6:確定各路輸出的匝數
濾波器的轉折頻率要大于1/3 開關頻率,考慮到開關電源在實際應用中可能會帶容性負載,L 不宜過大,建議不超過4.7μH。10. Step10:鉗位吸收電路設計如圖 8 所示,反激變換器在MOS 關斷的瞬間
2020-07-21 07:38:38
設計反激變換器步驟Step1:初始化系統參數
取0.2 即可。一般在整流后的最小電壓Vinmin_DC 處設計反激變換器,可由Cbulk 計算Vinmin_DC:3. Step3:確定最大占空比Dmax反激變換器有兩種運行模式:電感電流連續模式
2020-07-20 08:08:34
設計反激變換器:補償電路設計
。前文提到,對于峰值電流模式的反激變換器,使用Dean Venable Type II 補償電路即可,典型的接線方式如下圖所示:通常,為降低輸出紋波噪聲,輸出端會加一個小型的LC 濾波器,如圖 10 所示
2020-07-20 08:21:48
資料分享:LLC 諧振變換器的研究
的電流電壓分析3.8.1 副邊整流二極管3.8.2 變壓器原邊勵磁電感3.8.3 諧振槽路3.9 本章小結第四章 LLC 諧振變換器的小信號分析 4.1 開關電源小信號建模的方法概述 4.2 擴展描述
2019-09-28 20:36:43
輸出反灌電流零電壓軟開關反激變換器
零電壓開通,電路的結構如圖1所示,和傳統的采用同步整流的反激變換器完全相同,只是控制的方式不一樣,工作的原理分析如下。圖1:輸出反灌電流零電壓軟開關反激變換器圖2:輸出反灌電流零電壓軟開關反激變換器
2021-05-21 06:00:00
連續電流模式反激變壓器的設計
反激式變換器以其電路結構簡單,成本低廉而深受廣大開發工程師的喜愛,它特別適合小功率電源以及各種電源適配器.但是反激式變換器的設計難點是變壓器的設計,因為輸入電壓范圍寬,特別是在低輸入電壓,滿負載
2023-09-28 07:07:09
零基礎如何入門學習電源?帶你從反激變壓器開始了解
公式 41 可知,如果不加斜坡補償(ma=0),當占空比超過 50%時,電流環震蕩,表現為驅動大小波,即次諧波震蕩。因此,設計 CCM 模式反激變換器時,需加斜坡補償。對 DCM 模式反激,控制到輸出
2020-07-11 07:00:00
高效率反激變換器設計技巧分享
漏感問題是反激變換器的基本問題。漏感是硬傷。要實現高效率,控制漏感是重頭戲。先做好漏感,再說其余。漏感有多大?意味著能量傳遞損失多大,變換器效率損失有多大,鉗位電路熱損耗有多大。這都是額外的,其他變換器沒有的。
2023-09-19 07:44:19
高頻共模電流、電壓和阻抗的測量 —— 以反激變換器為例
為例,來談論怎樣得到準確的測量結果。02反激變換器高頻共模電流的測量下圖左圖為反激變換器的拓撲及共模電流路徑。在共模路徑上,原邊主要有共模濾波器,整流橋,電解電容等;共模電流通過變壓器流到副邊,并流到
2021-12-21 07:00:00
一種新型反激變換器的研究
本文基于NCP1205 芯片設計了一種新型準諧振反激變換器。在分析該變換器工作原理的基礎上,進行了電路設計和工作頻率計算。由實驗結果,新型反激變換器具有良好的負載調整
2009-05-30 14:42:5019
不對稱半橋同步整流DC DC變換器
簡要介紹了不對稱半橋同步整流變換器的5--作原理,對同步整流管的驅動方式進行了比較和選擇,并在分析變換器的整流損耗的基礎上,總結出了影響整流損耗和變換器效率的各
2009-10-16 10:23:4126
一種反激同步整流DC-DC變換器設計
對反激同步整流在低壓小電流DC-DC變換器中的應用進行了研究,介紹了主電路工作原理,幾種驅動方式及其優缺點,選擇出適合于自驅動同步整流的反激電路拓撲,并通過樣機試驗
2009-10-19 09:17:3258
正激變換器簡明設計
正激變換器簡明設計1、優點和缺點1、優點:結構簡單,驅動電路簡單,輸出紋波電流小適用于低電壓大電流輸出,易于多路輸出,可靠性高。2、缺點:變壓器單向勵磁
2010-03-20 16:13:2941
一種有源鉗位同步整流DC-DC變換器的研究
摘要:介紹了同步整流的工作原理,根據自驅動同步整流電路的要求,選擇出適合與之結合使用的高效拓撲—有源鉗位正激變換器,分析了其工作原理并對其作了詳細的損耗分析,通過樣機
2010-06-03 09:10:3135
一種反激同步整流DC-DC變換器設計
對反激同步整流在低壓小電流DC-DC變換器中的應用進行了研究,介紹了主電路工作原理,幾種驅動方式及其優缺點,選擇出適合于自驅動同步整流的反激電路拓撲,并通過樣機試
2006-03-11 13:00:262135
不對稱半橋同步整流DC/DC變換器
不對稱半橋同步整流DC/DC變換器
0 引言
目前,對低壓大電流輸出變換器的研究已經成為重要的課題之一,如何提高這類變換器的效率
2009-07-04 11:34:361264
反激變換器副邊同步整流控制器STSR3應用電路詳解(2)
反激變換器副邊同步整流控制器STSR3應用電路詳解(2)
摘要:為大幅度提高小功率反激開關電源的整機效率,可選用副邊同步整流技術取代原肖特基二極管整流器。
2009-07-06 09:09:121538
諧振復位雙開關正激變換器的研究
諧振復位雙開關正激變換器的研究
摘要:推薦了一種諧振復位雙開關正激型DC/DC變換器。它不僅克服了諧振復位單開關正激變換器開
2009-07-11 09:29:471304
反激變換器副邊同步整流控制器STSR3應用電路詳解(1)
反激變換器副邊同步整流控制器STSR3應用電路詳解(1)
摘要:為大幅度提高小功率反激開關電源的整機效率,可選用副邊同步整流技
2009-07-11 09:52:071440
倍流同步整流在DC/DC變換器中工作原理分析
倍流同步整流在DC/DC變換器中工作原理分析
在低壓大電流變換器中倍流同步整流拓撲結構已經被廣泛采用。就其工作原理進行了詳細的分析說明,并給出了相應的實驗
2009-10-29 17:36:062568
基于NCP1200A的多路反激變換器的研究
基于NCP1200A的多路反激變換器的研究
介紹了低功率通用離線式電源的脈寬調制電流型控制器NCP1200A的原理,并且通過所研制出的多路隔離反激變換器
2009-10-29 17:45:231809
同步整流實現反激變換器設計
詳細分析了同步整流反激變換器的工作原理和該驅動電路的工作原理,并在此基礎上設計了100V~375VDC 輸入,12V/4A 輸出的同步整流反激變換器,工作于電流斷續模式,控制芯片選用UC3842,
2011-08-30 14:35:366067
正激變換器同步整流驅動方法分析
本文對正激變換器同步整流的內驅動、外驅動方法的工作原理進行了比較分析。討論了提高同步整流效率應采取的措施。 并得出結論,同步整流是低壓、大電流電源中提高效率的有效方法。
2016-05-11 15:26:219
基于輸出反灌電流的ZVS軟開關反激變換器的原理和應用
開通,電路的結構如圖1所示,和傳統的采用同步整流的反激變換器完全相同,只是控制的方式不一樣,工作的原理分析如下。
2022-03-25 09:43:0013941
LT3752LT8311演示電路-帶同步整流的有源箝位正激變換器(36-72V至12V@12A)
LT3752LT8311演示電路-帶同步整流的有源箝位正激變換器(36-72V至12V@12A)
2021-06-02 14:30:183
LTC3765LTC3766演示電路-120W隔離正激變換器,帶同步整流(9-36V至12V@10A)
LTC3765LTC3766演示電路-120W隔離正激變換器,帶同步整流(9-36V至12V@10A)
2021-06-05 16:03:198
不對稱半橋同步整流DC/DC變換器.pdf
不對稱半橋同步整流DC/DC變換器.pdf(移動電源顯示fu)-:簡要介紹了不對稱半橋同步整流變換器的5--作原理,對同步整流管的驅動方式進行了比較和選擇,并在分析變換器的整流損耗的基礎上,總結出了影響整流損耗和變換器效率的各種參數。
2021-07-26 14:40:0028
反激同步整流DC TO DC變換器的設計.pdf
反激同步整流DC TO DC變換器的設計.pdf(12v 20a電源)-摘 要: 對反激同步整流在低壓小電流DC-DC變換器中的應用進行了研究,介紹了主電路工作原理,幾種驅動方式及其優缺點,選擇出適合于自驅動同步整流的反激電路拓撲,并通過樣機試驗,驗證了該電路的實用性。
2021-07-26 14:43:3734
一種同步整流升壓型DC-DC變換器的設計與研究
一種同步整流升壓型DC-DC變換器的設計與研究(安徽理士電源技術有限公司招聘)-首先對變換器的功率級部分元件的選取進行了分析,考慮到損耗的部分,決定應用同步整流模式來提高效率。同步整流方法是由功率
2021-09-17 11:54:342
反激變換器PSIM仿真案例
特殊,它兼起儲能電感的作用,稱為儲能變壓器(或電感-變壓器)。為防止負載電流較大時磁心飽和,反激變換器的變壓器磁心要加氣隙,降低了磁心的導磁率,這種變壓器的設計相對復雜些。
2022-12-23 16:18:115277
反激變換器的整流二極管上面為什么要并聯電容和電阻?
反激變換器的整流二極管上面為什么要并聯電容和電阻? 反激變換器(Flyback Converter),又稱反激式開關電源,是一種常見的開關電源拓撲結構,其主要特點是采用一個能量存儲元件(如變壓器
2023-09-12 18:19:082242
評論
查看更多