摘要:討論了開關電源中電流反饋控制模式的工作原理、優缺點,以及與之有關的斜波補償技術。 關鍵詞:開關電源;電流型控制;斜波補償 1引言 PWM型開關穩壓電源是一個閉環控制系統,其基本工作原理就是在輸入電壓、內部元器件參數、外接負載等因素發生變化時,通過檢測被控制信號與基準信號的差值,利用差值調節主電路功率開關器件的導通脈沖寬度,從而改變輸出電壓的平均值,使得開關電源的輸出電壓保持穩定。 以開關電源中的降壓型變換為例(其它類型如正激型、推挽型等,均可由降壓型派生得到),圖1表示了該變換器的主電路的基本拓撲結構。 圖1降壓型開關電源 根據選用不同的PWM控制模式,圖1電路中的輸入電壓Uin、輸出電壓Uo、開關功率器件電流(可從A點采樣)、輸出電感電流(可從B或C點采樣)均可作為控制信號,用于完成穩壓調節過程。目前在開關電源中廣泛使用的控制方式是通過對輸出電壓或電流(功率開關器件或輸出電感上流過的電流)進行采樣,即形成2類控制方式:電壓控制模式與電流控制模式。 2電流控制模式的工作原理 圖2為檢測輸出電感電流的電流型控制的基本原理框圖。它的主要特點是:將采樣得到的電感電流直接反饋去控制功率開關的占空比,使功率開關的峰值電流直接跟隨電壓反饋電路中誤差放大器輸出的信號。從圖2中可以看出,與單一閉環的電壓控制模式相比,電流模式控制是雙閉環控制系統,外環由輸出電壓反饋電路形成,內環由互感器采樣輸出電感電流形成。在該雙環控制中,由電壓外環控制電流內環,即內環電流在每一開關周期內上升,直至達到電壓外環設定的誤差電壓閾值。電流內環是瞬時快速進行逐個脈沖比較工作的,并且監測輸出電感電流的動態變化,電壓外環只負責控制輸出電壓。因此電流型控制模式具有比起電壓型控制模式大得多的帶寬。 圖2檢測輸出電感電流的電流型控制原理框圖 實際電路以單端正激型電源為例,如圖3所示。誤差電壓信號Ue送至PWM比較器后,并不是像電壓模式那樣與振蕩電路產生的固定三角波狀電壓斜波比較調寬,而是與一個變化的、峰值代表功率開關上的電流信號(由Rs上采樣得到)的三角狀波形信號(電感電流不連續)或矩形波上端疊加三角波合成波形信號(電感電流連續)比較,然后得到PWM脈沖關斷時刻。在電路中,電流的采樣通常使用一只在MOSFET源極與地之間串聯的電阻完成,有時為了提高效率,也可通過在MOSFET源極上接一只電流互感器獲得電流采樣信號。圖4為各相關點的波形。 圖3電路穩壓原理可以簡述如下:當輸入電壓變化時,由于變壓器的初級電流上升率發生變化,即Ur波形上端的三角波部分的斜率變化,導致Ur與Ue相交的時間提前或滯后,從而使輸出脈沖寬度變化,達到輸出電壓值的穩定;而當負載發生變化時,Ur與Ue同時變大或變小,使得電感電流對輸出濾波電容的充電電流發生變化,以保持輸出電壓穩定。 3電流型控制的優缺點 3?1電流型控制模式的優點 1)線性調整率(電壓調整率)非常好,這是因為輸入電壓的變化立即反映為電感電流的變化,無須經過誤差放大器就能在比較器中改變輸出脈沖寬度,再加上輸出電壓到誤差放大器的控制,使得電壓調整率更好。由于對輸入電壓的變化和輸出負載的變化的瞬態響應快,故適合于負載快速變化時對響應速度要求較高的場所。 2)雖然電源的L-C濾波電路為二階電路,但增加了電流內環控制后,只有當誤差電壓發生變化時,才會導致電感電流發生變化。即誤差電壓決定電感電流上升的程度,進而決定功率開關的占空比。因此,可看作是一個電流源,電感電流與負載電流之間有了一定的約束關系,使電感電流不再是獨立變量,整個反饋電路變成了一階電路,由于反饋信號電路與電壓型相比,減少了一階,因此誤差放大器的控制環補償網絡得以簡化,穩定度得以提高并且改善了頻響,具有更大的增益帶寬乘積。 3)在推挽型和全橋型開關電源中,由于2個開關器件本身的壓降和開關延遲時間不一定完全一致等原因,容易引起變壓器的直流偏磁。采用電流型控制,由于峰值電感電流提供自動的磁通平衡功能,可以有效地減少或消除直流偏磁,避免了變壓器的磁飽和。 4)具有瞬時峰值電流限流功能,這是由于受控的電流在上升到設定值時,會使PWM停止輸出,因此電流型自身具有固有的逐個脈沖限流功能,在電路中不必另外附加限流保護電路;而且這種峰值電感電流檢測技術可以較精確地限制最大電流,從而使開關電源中的功率變壓器和開關管不必有較大的冗余,就能保證可靠工作。 5)使用電流型控制,簡化了反饋控制補償網絡、負載限流、磁通平衡等電路的設計,減少了元器件的數量和成本,這對提高開關電源的功率密度,實現小型化,模塊化具有重要的意義。 3?2電流型控制模式的缺點 1)占空比大于50%時系統可能出現不穩定性,可能會產生次諧波振蕩;另外,在電路拓撲結構選擇上也有局限,在升壓型和降壓-升壓型電路中,由于儲能電感不在輸出端,存在峰值電流與平均電流的誤差。 2)對噪聲敏感,抗噪聲性差。因為電感處于連續儲能電流狀態,開關器件的電流信號的上升斜坡斜率通常較小,電流信號上的較小的噪聲就很容易使得控制誤動作,改變關斷時刻,使系統進入次諧波振蕩。 圖3單端正激式開關電源 圖4單端正激式電路各相關點波形 圖5D<0.5時的波形 圖6D>0.5時的波形 圖7D>0.5時加斜波補償后的波形 3)在要求輸入/輸出隔離的電路類型中,對隔離變壓器的設計要求較高。例如在單端正激式電路中,為保證從開關管上取樣的電流斜波具有一定的斜率,要求變壓器初級的電感量較小,但這樣會使勵磁電流增加,效率下降。因此需要協調好二者的關系。 4)電流型控制不大適合于半橋型開關電源。這是因為在半橋式電路中,通過橋臂2只電容的放電維持變壓器初級繞組的伏-秒平衡;當電流型控制通過改變占空比而糾正伏-秒不平衡時,會導致這2只電容放電不平衡,使電容分壓偏離中心點,然而電流型控制在此情況下試圖進一步改變占空比,使電容分壓更加偏離中心點,形成惡性循環。 4電流型控制模式中的斜波補償 4.1電流型控制存在問題的改善 針對電流型控制中的主要缺點,目前許多電流型控制PWM芯片均提供了斜波補償功能,它可以有效改善電流型控制中存在的以下幾個問題: 1)開環不穩定性電流型電源的占空比大于50%時,就存在電流控制內環工作不穩定的問題。如果給電流控制內環增加一個斜波補償信號,則變換器可以在任何脈沖占空比情況下正常工作。斜波補償工作原理如下所述。 圖5表示了由誤差電壓Ue控制的電流型變換器的波形,假如由于某種原因,產生一個攏動電流ΔI加至電感電流IL,當占空比<0.5時,從圖5所示可以看出這個攏動ΔI將隨時間的變化而減小;但當占空比>0.5時,這個攏動將隨時間增加而增加,如圖6所示。擾動量的增加可能會導致電路工作的不穩定,產生次諧波振蕩。擾動量的變化可用數學表達式表示為: ΔI1=-ΔI0 ΔI1表示經過一個周期后擾動量的大小。 為了消除這種振蕩,可引入斜率為-m的斜波信號,如圖7所示。這個斜波電壓既可加至電流波形上,也可以從誤差電壓中減去。這樣一來,擾動量變為: m 2)減小峰值電感電流與平均電流的誤差電流模式控制是一種固定時鐘開啟、峰值電流關斷的控制方法。因為峰值電流(流過功率開關或電感上)在實際電路中容易進行采樣,而且在邏輯上與平均電感電流大小變化相一致。但是,電感電流與輸出平均電流之間存在一定的誤差,峰值電感電流的大小不能與平均電感電流大小一一對應,因為在占空比不同的情況下,相同的峰值電感電流可以對應不同的平均電感電流,如圖8所示。 而平均電感電流是唯一決定輸出電壓大小的因素。與消除次諧波振蕩的方法類似,利用斜波補償可以去除不同占空比對平均電感電流大小的影響,使得所控制的峰值電感電流最后收斂于平均電感電流,如圖9所示。 圖8不同占空比時,相同峰值電感電流對應的平均電感電流 圖9利用斜波補償消除不同占空比對平均電感電流的影響 (a)斜波補償加至2端????????????? (b)斜波補償加至3端 圖10利用UC1824/43的2種斜波補償方法 3)提高電流檢測精度由于在電流型控制中依靠對電感電流上升斜波的檢測完成控制,所以若電流變化率較大,可以提供較好的抗噪聲干擾能力和為電流比較器提供較好的信號電平。而采用斜波補償的方法,等于人為地改善了電感電流上升斜率,使其具有類似于電壓控制模式抗噪聲裕度較大的優點。 4.2電流型控制的斜波補償實例 美國UNITRODE公司生產的電流型PWM控制芯片UC1842/43,具有外電路簡單,成本較低等優點。關于它的電性能與典型應用這里不再贅述,只簡單介紹一下進行斜波補償的方法。圖10說明了UC1842/43的2種斜波補償方法: 第一種如圖10(a)所示,從斜波端(即腳4振蕩器輸出端)接一個電阻R1至誤差放大器反相輸入端(腳2),于是誤差放大器輸出呈斜波狀,再與采樣電流比較。第二種方法如圖10(b)所示,它從斜波端(腳4)接一電阻R2至電流采樣比較器正端(腳3),這時將在Rs上的感應電壓上增加斜波的斜率,再與平滑的誤差電壓進行比較。用這2種方法,均能有效地改善電源的噪聲特性。 5結語 本文較為詳細地論述了電流型控制模式的基本原理,優缺點,并且系統地分析了電流型控制中如何利用斜波補償來消除或減小電流型控制帶來的問題,對于電流型開關電源的選擇,設計和優化具有一定的參考價值。 參考文獻 [1]張占松,蔡宣三.開關電源的原理與設計[M].北京:電子 工業出版社,1999. [2]葉治政,葉靖國.開關穩壓電源[M].北京:高等教育出 版社,1989. 廠,1997. |
開關電源中的電流型控制模式
- 電流型(10822)
- 控制模式(8320)
相關推薦
電流型開關電源中的UC3842電壓反饋電路
傳統的電壓型控制中只有一個環路,動態性能差。當輸入電壓有擾動時,通過電壓環反饋引起占空比的改變速度比較慢。因此,在要求輸出電壓的瞬態誤差較小的場合,電壓型控制模式是不理想的。為了解決這個問題,可以采用電流型控制模式。下文將介紹電流型開關電源中電壓反饋電路的設計方案。
2013-09-23 14:20:25
30672

電流控制的開關電源系統
電流型控制的開關電源系統有三種控制方式:即峰值電流控制、平均電流控制和滯環電流控制。為了介紹簡單,本文只介紹連續導電模式(CCM),提供電流型控制的開關電源系統結構框圖及方框圖。
2013-09-24 11:22:50
2615


開關電源控制器IC及參考設計原理圖詳細
該芯片是一款高集成度、高性能的 PWM+ MOSFET 二合一的電流型離線式開關電源控制器。適用于充電器、電源適配器等各類小功率的開關電源。采用 DIP8 封裝,無需加散熱器可輸出 0~36W
2015-04-28 16:25:49
開關電源PWM的五種反饋控制模式
開關電源PWM的五種反饋控制模式:一般來講,正激型開關電源主電路可用圖1所示的降壓斬波器簡化表示,Ug表示控制電路的PWM輸出驅動信號。根據選用不同的PWM反饋控制模式,電路中的輸入電壓Uin、輸出
2011-08-09 11:53:11
開關電源產生浪涌電流?
很多開關電源(特別是大功率開關電源)在加電瞬間要汲取一個較大的電流。這個浪涌電流可能達到電源靜態工作電流的1O倍~100倍。由此,至少有可能產生兩個方面的問題。第一,如果直流電源不能供給足夠的啟動
2015-09-11 10:42:13
開關電源厚膜芯片STRM6833BF04相關資料下載
概述:STRM6833BF04是一款開關電源厚膜芯片,常用作于早期CRT彩色電視機的開關電源電路中,STRM6833BF04內部電路采用電流型脈寬控制,使主開關電源的工作更加可靠出的直流電壓更穩定;因該厚膜電路
2021-04-06 06:16:21
開關電源同步整流控制的優勢
面對新世紀,對快充技術的普及,開關直流電源使用范圍更加廣泛,降低低壓大電流的功耗已經成為電力工程師的難題。開關電源損耗主要由斷路器管損耗、高頻變壓器損耗、插座集電器損耗等組成。同步開關電源可以減少總
2022-10-12 10:18:15
開關電源恒功率控制的輸入電壓補償方法
:對于工作于寬輸入電壓范圍的離線式電流型控制開關電源,為了獲得恒功率控制,需要加入輸入電壓補償電路以平衡不同輸入電壓時的過功率保護點。分析了傳統反激式開關電源的輸入電壓補償原理,提出了一種低功耗
2013-07-26 17:48:39
開關電源技術的發展
工作,是目前最優秀的均流方法法 4.1 開關電源控制技術的介紹?! ∑骷l展到一定程度后,要進一步提高產品電流模式控制技術[1]則在以往電壓反饋控制的性能,必須采用新的控制方法和新的技術。目的基礎上
2018-11-21 16:29:12
開關電源環路設計與計算經驗分享
模式開關電源系統可分為兩大塊:負反饋回路(feedback loop)、保護功能(OVP, OCP, OTP ……)開關電源環路分析和設計流程:開關電源環路的小信號傳函:Flyback 系統控制
2022-10-26 14:55:00
評論