Abstract: This application note describes the use of a current-sense amplifier along with an optocoupler to extend the operating voltage range up to 1,000 volts for high-voltage applications. The circuit relies on the optocoupler's isolation barrier to separate the high-side and grounded side of the 1,000V system. Op amps are used to eliminate photodiode non-linearity and drift and provide an accurate output voltage proportional to the load on the 1kV supply.
The task of sensing DC current at high voltage is often problematic. Most high-side current-sensing ICs available off-the-shelf are good to 30V or 40V. Newer offerings (such as the MAX4080/4081) can sense up to 76V. For higher voltages, a current-sense amp can be combined with an optocoupler. The high-side voltage is limited only by the optocoupler's stand-off voltage (Figure 1).
Figure 1. The ground-referenced output voltage VOUT = ISHUNT (4.80V/A) is proportional to the high-side load current. As configured, the circuit measures load currents to 1A.
A precision, high-side current-sense amplifier (U1) and a high-linearity analog optocoupler (U3) extend the high-side working voltage to 1000VDC. U3 supports a continuous 1000VDC. Its UL rating is 5000VRMS for one minute, and its transient surge rating is 8000VDC for 10s. (Follow all proper safety precautions when working with high voltage.)
The circuit has a floating section and a grounded section, each requiring a local low-voltage supply. The floating section detects load current and drives the high-voltage side of the optocoupler. The grounded section monitors the optocoupler's low-voltage side, and outputs a voltage proportional to the high-side load current. The chosen optocoupler has a feedback photodiode on the high-voltage side that virtually eliminates the LED's nonlinearity and drift characteristics. In addition, its two closely matched photodiodes ensure a linear transfer function across the isolation barrier.
During operation, the load current passes through shunt R1 and produces a small voltage. This voltage is monitored by U1, which outputs a proportional current of 10mA/V. This proportional output current is routed through R2, which produces a voltage proportional to the main load current. The rest of the circuit generates a copy of the voltage across R2, but on the low-voltage side of the optocoupler. U2 monitors the voltage across R2 and drives the optocoupler's LED via Q1. Light generated by the LED impinges equally on the high-side and low-side photodiodes. U4 monitors the low-side photodiode and outputs a voltage proportional to the high-side load current. A graph shows the output voltage as a function of shunt current (Figure 2).
Figure 2. In Figure 1, the output voltage vs. shunt current is linear.
If R3 and R5 are equal, the overall transfer function is:
Three parameters let you modify the circuit to monitor other maximum load currents, and output a different voltage range. The maximum U1 output current is 1.5mA, so the maximum allowed shunt voltage is 150mV. Also, the maximum allowed photodiode current is 50μA. Choose an R1 value that produces 150mV at the maximum load current to be monitored. Then choose an R2 value that produces the desired corresponding maximum output voltage at 1.5mA. Match R3 and R5, choosing a value that allows less than 50μA through the photodiode at the maximum desired output voltage:
R3 ≥ (VOUT_MAX)/(50 × 10-6)
The circuit OUTPUT then faithfully reproduces the voltage across R2. The MAX4162 op-amp was chosen for its low input bias current (1pA), rail-to-rail input and output swings, and its ability to operate from a single 9V battery. With R1 = 150mΩ and R2 = 3.32kΩ as shown, the output voltage for ISHUNT = 1A calculates to 4.80V using the transfer function above. Experimental results at ISHUNT = 1.00A give VOUT = 4.84V, with an error less than 1%.
利用光電耦合器將高端電流檢測器的工作電壓擴展至1kV
- 電流檢測器(11319)
- 光電耦合器(86893)
相關推薦
光電耦合器
的控制電壓增大,經IC1內的控制電路處理后,開關管的導體時間縮短,輸出端電壓下降到規定值。當輸出端電壓下降時,穩壓控制過程相反。光電耦合器IC2 2腳外接的C5是軟啟動電容。開啟瞬間,C5需要充電,在它
2017-05-23 09:25:14
光電耦合器檢測儀相關資料推薦
。 由此可見,只有在LED閃爍發光時,光電耦合器才是好的,LED常亮和不亮時,光電耦合器都是壞的。 要想改變LED的閃爍頻率,只需改動R1、R2阻值或者改變電容C1的容量。
2021-05-20 06:37:24
光電耦合器件的構成原理
措施。如可控硅所在的主電路一般是交流強電回路,電壓較高,電流較大,不易與微機直接相連,可應用光耦合器將微機控制信號與可控硅觸發電路進行隔離。 在馬達控制電路中,也可采用光耦來把控制電路和馬達高壓電
2012-12-07 12:14:06
光電耦合器傳輸速度的提高
當采用光耦隔離數字信號進行控制系統設計時,光電耦合器的傳輸特性,即傳輸速度,往往成為系統最大數據傳輸速率的決定因素。在許多總線式結構的工業測控系統中,為了防止各模塊之間的相互干擾,同時不降低通訊
2012-12-13 12:16:27
光電耦合器在并口長線傳輸中的應用
,當電流流過地線時,會在地線上產生電壓,這就是地線噪聲。在這個電壓的驅動下,會產生地線環路電流,形成地環路干擾。南于發送和接收設備共用一段地線,會形成公共阻抗耦合。采用光電隔離器TLP521-4對發送
2011-01-17 20:15:16
光電耦合器在日常設計使用過程中需要注意
光電耦合器在電子電路設計中是一種必不可少的器件,其能夠將光能與電能進行互相轉換,從而達到對電能進行自由掌控的目的。并且隨著現代電源設備的多樣化發展,光電耦合器的應用場合也越來越廣泛。在接下來的內容中,小編將為大家介紹光電耦合器在日常設計中的一些使用常識,快來看看吧。
2021-03-01 10:39:13
光電耦合器用于邏輯電路互聯
。輸入交流信號U1疊加在直流偏置之上,經光電耦合器在100Ω電阻兩端產生電壓,其中的交流信號耦合到運算放大器的反相端,經放大后輸出交流信號U0.圖4、線性放大電路3、電平轉移各種邏輯電路如工作電壓
2018-01-12 11:01:51
評論