開關電源雙極性開關管的選擇

2012年10月24日 15:20 來源:互聯網 作者:秩名 我要評論(0)

  所謂雙極性,是指有兩個PN結的普通開關三極管,在“彩顯”中一般作為開關電源、行輸出級和S校正電路的切換開關。三極管的開關狀態和模擬放大狀態的要求明顯不同,對開關特性的描述也不是通常的fT、fa所能概括。

  在開關電源中,是通過三極管開與關的時間比(即占空比)穩定輸出電壓的。在這里,三極管被當作開關使用,利用三極管的放大作用,通過極小的基極電流控制集電極電流。當集電極電流飽和時,認為開關已接通,而集電極電流截止時,則認為開關已斷開。

  但是,三極管的開/關并非處于理想狀態,導通時尚有其飽和壓降VCES,斷開時其IC≠0,而具有一定的ICEO。與理想開關相比,晶體管作為開關并非完全隨基極控制電流同時進行開/關,其中存在一定的過程。

  為了研究三極管開/關此瞬間過程,首先對開/關的相對值作一規定,即當集電極電流達到其最大飽和電流90%時,認定它已接通,而集電極電流下降為I。的10%時,認為它已經斷開。按此標準計量,三極管開/關過程所需時間作為衡量三極管的開關特性的比較標準。

  晶體管工作在開關狀態和工作在線性放大狀態有完全不同的要求。放大狀態要求三極管的Ic應該完全受控于IB,且兩者有穩定的線性關系,包括放大后的模擬波形和輸入波形有完全相同的包絡線。開關狀態則要求三極管的基極電流達到Icm/hfe,其集電極電流立即上升到Icm,不應有過渡過程。但實際上這是不可能的,因為三極管是利用其放大特性工作于開關狀態的。

  任何三極管其IC-IB特性均為與x軸有一夾角的斜線,該斜線的斜率(即夾角)永遠不會垂直于X軸(即hfe不會無窮大),那么,Ir控制Ic由零增長到Icm也必然要符合斜線的規律才能達到,因而通/斷都需一定的時間。

  除此而外,雙極性晶體管基本放大原理也使開關動作需一定的時間。晶體管處于放大狀態,常用最高截止頻率(fT)和共基極放大狀態最高頻率(fa)表示晶體管可工作的頻率范圍。但是,fT、fa并不能確切的表示晶體管的開關特性,雖然fT、fa越高,三極管的開關特性也越好,但有的晶體管fr、fa相同,其開關特性卻不盡相同。因此,三極管的開關特性常用開關的導通時間ton和關斷時間toff來表示。

  導通時間是指,當基極驅動脈沖加入后,集電極電流由零達到飽和值90%所占用的時間。為了排除驅動電流的影響,假設加到基極一發射極之間的控制電流為理想的矩形波,見下圖所示。在基極電流以垂直于X軸的特性上升時,集電極電流Ic并不隨之升高,而是有一延遲時間t。,在此時間內lc呈緩慢曲線上升到Icm的10%。產生延遲時間的原因是:三極管在截止狀態時,基區基本無自由電子,當控制電壓突然升高時,欲使發射結達到VB≥+0.6V,輸入電流必須不斷地給發射結電容充電,以降低PN結的內部電場,然后再向基區發射電子,因而需經過一段時間(ta)。ta正比于發射結電容,反比于發射結的面積。開關管功率越大,必然發射結面積相應增大,欲要減小t。就越加困難。

  

  發射結的充電速度,不僅與輸入驅動脈沖的內阻有關,而且與三極管的截止有關。如果三極管處于深度截止(即反向偏置過大),ta也越慢。當Ic達到10%的Icm時,在驅動脈沖的作用下,Ic隨IB呈線性增長。

  其增長速度即從Ic由10%到90%曲線的斜率等于該管的hfe。

  前面已提到,此段曲線不可能是垂直線,因而形成上升時間tr。很明顯,三極管的hfe越大,Tr越短。經過延遲時間與上升時間之后,三極管Ic=90%的Icm才認為其已經導通,開關閉合,因此導通時間為ta+tr。當驅動脈沖回落至零時,開關的關斷同樣需要一定的時間。

  當開關管飽和時,基區必然積累較多的電荷,集電結形成空穴積累,飽和過程中必然出現IB》IC/hFE,這是使三極管進入飽和區的可靠保證。但如果IB遠大于IC/hFE,即處于過飽和狀態(或稱深度飽和狀態),基區存儲電荷越多,集電結空穴積累越嚴重,當驅動脈沖截止時,存儲電荷的消散時間也越長,因而在驅動脈沖截止后,將Ic由90%降低為10%的時間稱為存儲時間ts。從三極管結構來說,基區和集電區越薄,存儲電荷量就越小,tr也就越小。經過ts之后,三極管隨存儲時間基區正偏逐漸消失,Ic隨之下降,形成下降時間tf。

  存儲時間ta+tf,即構成開關管關斷時間。導通時間與關斷時間首先取決于三極管的結構和工藝,其次才是設計合理的開關驅動電路。

  導通時間和截止時間構成開關管的導通損耗和截止損耗。因為在此時間內,三極管處于放大區,其管壓降必然增大,功耗隨之增加。與此相同的原理,二極管也有導通/截止時間,不過,在開關電源中,影響最大的是二極管的反向恢復時間。當二極管導通后,外加脈沖降為零,二極管并不會立即截止,恢復到截止需一定時間(與上述相同的原因)。當工作頻率升高時,正向脈沖過后二極管不能及時恢復,其單向導電性則使電路處于短路狀態。二極管的恢復時間除取決于PN結、N電容以外,還與工藝結構有關,因此有普通工頻整流二極管、快恢復二極管、肖特基二極管之分。

  普通工頻整流二極管正向壓降范圍為1~2V,隨耐壓升高有不同程度的增大。目前其最高反壓可作到5kV以上,最大整流電流達到kA以上。所謂工頻,不單指頻率,還指其波形是正弦波,其反向恢復時間比較慢,因此,此類二極管不適直用在方波逆變器中作整流和阻尼。在開關電源中,也只能用于交流電源整流。

  快恢復二極管,指反向恢復時間在50~200ns范圍內,可用于100kHz。以下的開關脈沖的整流、箝位及開關管的阻尼電路等。快恢復二極管的參數與生產工藝有關,反向恢復時間最快的屬外延法生產的二極管.一般手冊中所列最高反壓為其擊穿電壓的80%,選用時需注意留有適當的余量。

  肖特基二極管SBD為多數載流子單向導電器件,其開關時間極短,一般為50~100ns。其最大特點是:正向壓降理論上為0.3~0.5V,額定電流不超出0.6~0.8V,比PN結二極管的最大正向壓降1~1.2V低近一倍,因此作低壓大電流脈沖整流十分有利。但肖特基二極管反向電壓較低,大多為40V以下,只有極少數產品能達到100V。一股用于低壓輸出開關電源中和大電流低電壓的脈沖整流電路中。