切換工作模式 - 詳解如何實現開關電源待機低功耗

2012年12月03日 15:00 來源:互聯網 作者:秩名 我要評論(0)

標簽:開關電源(2)電源(1002)

  3.3 切換工作模式

  3.3.1 QR→PWM

  對于工作在高頻工作模式的開關電源,在待機時切換至低頻工作模式可減小待機損耗。例如,對于準諧振式開關電源(工作頻率為幾百kHz到幾MHz),可在待機時切換至低頻的脈寬調制控制模式PWM(幾十kHz)。

  IRIS40xx芯片就是通過QR與PWM切換來提高待機效率的。圖4是IRIS4015構成的反激式開關電源,重載時,輔助繞組電壓大,R1分壓大于0.6V,Q1導通,輔助準諧振信號經過D1,D2,R3,C2構成的延時電路到達IRIS4015的FB腳,內部比較器對該信號進行比較,電路工作在準諧振模式。當電源處于輕載和待機時候,輔助繞組電壓較小,Q1關斷,諧振信號不能傳輸至FB端,FB電壓小于芯片內部的一個門限電壓,不能觸發準諧振模式,電路則工作在更低頻的脈寬調制控制模式。

  

  圖4 由IRIS4015構成的QR/PWM反激式電源電路

  3.3.2 PWM→PFM

  對于額定功率時工作在PWM模式的開關電源,,也可以通過切換至PFM模式提高待機效率,即固定開通時間,調節關斷時間,負載越低,關斷時間越長,工作頻率也越低。圖5是采用NS公司的LM2618控制的Buck轉換器電路和分別采用PWM和PFM控制方法的效率比較曲線。由圖可見,在輕載時采用PFM模式的電源效率明顯大于采用PWM模式時的效率,且負載越低,PFM效率優勢越明顯。將待機信號加在其PW/引腳上,在額定負載條件下,該引腳為高電平,電路工作在PWM模式,當負載低于某個閾值時,該引腳被拉為低電平,電路工作在PFM模式。實現PWM和PFM的切換,也就提高了輕載和待機狀態時的電源效率。

  通過降低時鐘頻率和切換工作模式實現降低待機工作頻率,提高待機效率,可保持控制器一直在運作,在整個負載范圍中,輸出都能被妥善的調節。即使負載從零激增至滿負載的情況下,能夠快速反應,反之亦然。輸出電壓降和過沖值都保持在允許范圍內。

  

  3.4可控脈沖模式(Burst Mode)

  可控脈沖模式,也可稱為跳周期控制模式(Skip Cycle Mode)是指當處于輕載或待機條件時,由周期比PWM控制器時鐘周期大的信號控制電路某一環節,使得PWM的輸出脈沖周期性的有效或失效,如圖6所示。這樣即可實現恒定頻率下通過減小開關次數,增大占空比來提高輕載和待機的效率。該信號可以加在反饋通道,PWM信號輸出通道,PWM芯片的使能引腳(如LM2618,L6565)或者是芯片內部模塊(如NCP1200,FSD200,L6565和TinySwitch系列芯片)。

  

  NCP1200的內部跳周期模塊結構見圖7,當反饋檢測腳FB的電壓低于1.2V(該值可編程)時,跳周期比較器控制Q觸發器,使輸出關閉若干時鐘周期,也即跳過若干個周期,負載越輕,跳過的周期也越多。為免音頻噪音,只有在峰值電流降至某個設定值時,跳周期模式才有效。

  

  圖7 NCP1200跳周期模塊結構

  而FSD200則是通過控制內部驅動器實現可控脈沖模式,即將

  腳的反饋電壓與0.6V/0.5V遲滯比較器比較,由比較結果控制門極驅動輸出,其結構可見圖8。我們可根據此原理用分立元件實現普通芯片的Burst Mode功能,即檢測次級電壓判斷電源是否處于待機狀態,通過遲滯比較器,控制芯片輸出,電路如圖9所示。

  

  控制反饋通道是實現一般PWM控制器的可控脈沖模式的方法之一。其電路可見圖10,

  是

  反饋信號,當Burst Signal為低電平時,Q1關斷,

  電路正常工作,當Burst Signal為低電平時,Q1導通,R1被短路,

  流過Q1

  被拉高至

  -0.6V,反饋信號

  不能反映在

  上,控制器因此輸出低電平。

  另外對于有使能腳的PWM控制器,如L6565等,用可控脈沖信號控制使能腳使控制芯片有效或失效,也可以實現Burst Mode,上述Burst Signal可由圖1中所示的遲滯比較器產生。

  

  圖10 控制反饋通道的Burst Mode

  4 存在的問題

  以上介紹的降頻和Burst Mode方法在提高待機效率的同時,也帶來一些問題,首先是頻率降低導致輸出電壓紋波的增加,其次如果頻率降至20kHz以內,可能有音頻噪音。而在Burst Mode的OFF時期內,如果負載激增,輸出電壓會大大降低,如果輸出電容不夠大,電壓甚至可能降低至零。如果增大輸出電容,以減小輸出電壓紋波,則會導致成本增加,并會影響系統動態性能。因此必須綜合考慮。

上一頁12

本文導航