動力電池制造過程焊接方法與工藝的合理選用,將直接影響電池的成本、質量、安全以及電池的一致性。接下來就整理一下動力電池焊接方面的內容。還是先來原理,好像我是最喜歡搬運原理的作者之一呢。
1 激光焊接原理
激光焊接是利用激光束優異的方向性和高功率密度等特性進行工作,通過光學系統將激光束聚焦在很小的區域內,在極短的時間內使被焊處形成一個能量高度集中的熱源區,從而使被焊物熔化并形成牢固的焊點和焊縫。
2 激光焊接類型
熱傳導焊接和深熔焊
熱傳導焊接,激光光束沿接縫將合作在工件的外表熔化,熔融物匯流到一同并固化,構成焊縫。主要用于相對較薄的材料,材料的最大焊接深度受其導熱系數的約束,且焊縫寬度總是大于焊接深度。
深熔焊,當高功率激光聚集到金屬外表時,熱量來不及散失,焊接深度會急劇加深,此焊接技術即是深熔焊。因為深熔焊技術加工速度極快,熱影響區域很小,而且使畸變降至最低,因而此技術可用于需求深度焊接或幾層資料一起焊接。
熱傳導焊接和深熔焊的主要區別在于單位時間內施加在金屬表面的功率密度,不同金屬下臨界值不同。
穿透焊和縫焊
穿透焊,連接片無需沖孔,加工相對簡單。穿透焊需要功率較大的激光焊機。穿透焊的熔深比縫焊的熔深要低,可靠性相對差點。
縫焊相比穿透焊,只需較小功率激光焊機。縫焊的熔深比穿透焊的熔深要高,可靠性相對較好。但連接片需沖孔,加工相對困難。
脈沖焊接和連續焊接
1) 脈沖模式焊接
激光焊接時應選擇合適的焊接波形,常用脈沖波形有方波、尖峰波、雙峰波等,鋁合金表面對光的反射率太高,當高強度激光束射至材料表面,金屬表面將會有60%-98% 的激光能量因反射而損失掉,且反射率隨表面溫度變化。一般焊接鋁合金時最優選擇尖形波和雙峰波,此種焊接波形后面緩降部分脈寬較長,能夠有效地減少氣孔和裂紋的產生。
脈沖激光焊接樣品
由于鋁合金對激光的反射率較高,為了防止激光束垂直入射造成垂直反射而損害激光聚焦鏡,焊接過程中通常將焊接頭偏轉一定角度。焊點直徑和有效結合面的直徑隨激光傾斜角增大而增大,當激光傾斜角度為40°時,獲得最大的焊點及有效結合面。焊點熔深和有效熔深隨激光傾斜角減小,當大于60°時,其有效焊接熔深降為零。所以傾斜焊接頭到一定角度,可以適當增加焊縫熔深和熔寬。
另外在焊接時,以焊縫為界,需將激光焊斑偏蓋板65%、殼體35% 進行焊接,可以有效減少因合蓋問題導致的炸火。
2) 連續模式焊接
連續激光器焊接由于其受熱過程不像脈沖機器驟冷驟熱,焊接時裂紋傾向不是很明顯,為了改善焊縫質量,采用連續激光器焊接,焊縫表面平滑均勻,無飛濺,無缺陷,焊縫內部未發現裂紋。在鋁合金的焊接方面,連續激光器的優勢很明顯,與傳統的焊接方法相比,生產效率高,且無需填絲;與脈沖激光焊相比可以解決其在焊后產生的缺陷,如裂紋、氣孔、飛濺等,保證鋁合金在焊后有良好的機械性能;焊后不會凹陷,焊后拋光打磨量減少,節約了生產成本,但是因為連續激光器的光斑比較小,所以對工件的裝配精度要求較高。
連續激光焊接樣品
在動力電池焊接當中,焊接工藝技術人員會根據客戶的電池材料、形狀、厚度、拉力要求等選擇合適的激光器和焊接工藝參數,包括焊接速度、波形、峰值、焊頭傾斜角度等來設置合理的焊接工藝參數,以保證最終的焊接效果滿足動力電池廠家的要求。
3 激光焊接優點
能量集中,焊接效率高、加工精度高,焊縫深寬比大。激光束易于聚焦、對準及受光學儀器所導引,可放置在離工件適當之距離,可在工件周圍的夾具或障礙間再導引,其他焊接法則因受到上述的空間限制而無法發揮。
熱輸入量小,熱影響區小,工件殘余應力和變形小;焊接能量可精確控制,焊接效果穩定,焊接外觀好;
非接觸式焊接,光纖傳輸,可達性較好,自動化程度高。焊接薄材或細徑線材時,不會像電弧焊接般易有回熔的困擾。用于動力電池的電芯由于遵循“輕便”的原則,通常會采用較“輕”的鋁材質外,還需要做得更“薄”,一般殼、蓋、底基本都要求達到1.0 mm 以下,主流廠家目前基本材料厚度均在0.8 mm 左右。
能為各種材料組合提供高強度焊接,尤其是在進行銅材料之間和鋁材料之間焊接的時候更為有效。這也是唯一可以將電鍍鎳焊接至銅材料上的技術。
4 激光焊接工藝難點
目前,鋁合金材料的電池殼占整個動力電池的90% 以上。其焊接的難點在于鋁合金對激光的反射率極高, 焊接過程中氣孔敏感性高, 焊接時不可避免地會出現一些問題缺陷,其中最主要的是氣孔、熱裂紋和炸火。
鋁合金的激光焊接過程中容易產生氣孔,主要有兩類:氫氣孔和氣泡破滅產生的氣孔。由于激光焊接的冷卻速度太快,氫氣孔問題更加嚴重,并且在激光焊接中還多了一類由于小孔的塌陷而產生的孔洞。
熱裂紋問題。鋁合金屬于典型的共晶型合金,焊接時容易出現熱裂紋,包括焊縫結晶裂紋和HAZ 液化裂紋,由于焊縫區成分偏析會發生共晶偏析而出現晶界熔化,在應力作用下會在晶界處形成液化裂紋,降低焊接接頭的性能。
炸火(也稱飛濺)問題。引起炸火的因素很多,如材料的清潔度、材料本身的純度、材料自身的特性等,而起決定性作用的則是激光器的穩定性。殼體表面凸起、氣孔、內部氣泡。究其原因,主要是光纖芯徑過小或者激光能量設置過高所致。并不是一些激光設備提供商宣傳的“光束質量越好,焊接效果越優秀”,好的光束質量適合于熔深較大的疊加焊接。尋找合適的工藝參數才是解決問題的致勝法寶。
其他難點
軟包極耳焊接,對焊接工裝要求較高,必須將極耳壓牢,保證焊接間隙。可實現S形、螺旋形等復雜軌跡的高速焊接,增大焊縫結合面積的同時加強焊接強度。
圓柱電芯的焊接主要用于正極的焊接,由于負極部位殼體薄,極容易焊穿。如目前一些廠家采用的負極免焊接工藝,正極采用的為激光焊接。
方形電池組合焊接時,極柱或連接片受污染厚,焊接連接片時,污染物分解,易形成焊接炸點,造成孔洞;極柱較薄、下有塑料或陶瓷結構件的電池,容易焊穿。極柱較小時,也容易焊偏至塑料燒損,形成爆點。不要使用多層連接片,層之間有孔隙,不易焊牢。
方型電池的焊接工藝最重要的工序是殼蓋的封裝,根據位置的不同分為頂蓋和底蓋的焊接。有些電池廠家由于生產的電池體積不大,采用了“拉深”工藝制造電池殼,只需進行頂蓋的焊接。
方形動力電池側焊樣品
方形電池焊接方式主要分為側焊和頂焊,其中側焊的主要好處是對電芯內部的影響較小,飛濺物不會輕易進入殼蓋內側。由于焊接后可能會導致凸起,這對后續工藝的裝配會有些微影響,因此側焊工藝對激光器的穩定性、材料的潔凈度等要求極高。而頂焊工藝由于焊接在一個面上,對焊接設備集成要求比較低,量產化簡單,但是也有兩個不利的地方,一是焊接可能會有少許飛濺進入電芯內,二是殼體前段加工要求高會導致成本問題。
5 焊接質量影響因素
激光焊接是目前高端電池焊接推崇的主要方法。激光焊接是高能束激光照射工件,使工作溫度急劇升高,工件熔化并重新連接形成永久連接的過程。激光焊接的剪切強度和抗撕裂強度都比較好。電池焊接的好壞其導電性、強度、氣密性、金屬疲勞和耐腐蝕性能是典型的焊接質量評價標準。
影響激光焊接質量的因素很多。其中一些極易波動,具有相當的不穩定性。如何正確設定和控制這些參數,使其在高速連續的激光焊接過程中控制在合適的范圍內,以保證焊接質量。焊縫成形的可靠性和穩定性,是關系到激光焊接技術實用化、產業化的重要問題。影響激光焊接質量的主要因素分焊接設備,工件狀況和工藝參數三方面。?
1)焊接設備
?對激光器的質量要求最主要的是光束模式和輸出功率及其穩定性。光束模式是光束質量的主要指標,光束模式階數越低,光束聚焦性能越好,光斑越小,相同激光功率下功率密度越高,焊縫深寬越大。一般要求基模(TEM00)或低階模,否則難以滿足高質量激光焊接的要求。目前國產激光器在光束質量和功率輸出穩定性方面用于激光焊接還有一定困難。從國外情況來看,激光器的光束質量和輸出功率穩定性已相當高,不會成為激光焊接的問題。光學系統中影響焊接質量最大的因素是聚焦鏡,所用焦距一般在127mm(5in)到200mm(7.9in)之間,焦距小對減小聚焦光束腰斑直徑有好處,但過小容易在焊接過程中受污染和飛濺損傷。
波長越短,吸收率越高;一般導電性好的材料,反射率都很高,對于YAG激光來說,銀的反射率是96%,鋁是92%,銅90%,鐵60%。溫度越高,吸收率越高,呈線性關系;一般表面涂磷酸鹽、炭黑、石墨等可以提高吸收率。
2)工件狀況
激光焊接要求對工件的邊緣進行加工,裝配有很高的精度,光斑與焊縫嚴格對中,而且工件原始裝配精度和光斑對中情況在焊接過程中不能因焊接熱變形而變化。這是因為激光光斑小,焊縫窄,一般不加填充金屬,如裝配不嚴間隙過大,光束能穿過間隙不能熔化母材,或者引起明顯的咬邊、凹陷,如光斑對縫的偏差稍大就有可能造成未熔合或未焊透。所以,一般板材對接裝配間隙和光斑對縫偏差均不應大于0.1mm,錯邊不應大于0.2mm。實際生產中,有時因不能滿足這些要求,而無法采用激光焊接技術。要獲得良好的焊接效果,對接允許間隙和搭接間隙要控制在薄板厚的10%以內。
成功的激光焊接要求被焊基材之間緊密接觸。這需要仔細緊固零件,以取得最佳效果。而這在纖薄的極耳基材上很難做好,因為它容易彎曲失準,特別是在極耳嵌入大型電池模塊或組件的情況下。
3) 焊接參數
(1)對激光焊接模式和焊縫成形穩定件的影響焊接參數中最主要的是激光光斑的功率密度,它對焊接模式和焊縫成形穩定性影響如下:隨激光光斑功率密度由小變大依次為穩定熱導焊、模式不穩定焊和穩定深熔焊。
激光光斑的功率密度,在光束模式和聚焦鏡焦距一定的情況下,主要由激光功率和光束焦點位置決定。激光功率密度與激光功率成正比。而焦點位置的影響則存在一個最佳值;當光束焦點處于工件表面下某一位置(1~2mm范圍內,依板厚和參數而異)時,即可獲得最理想的焊縫。偏離這個最佳焦點位置,工件表面光斑即變大,引起功率密度變小,到一定范圍,就會引起焊接過程形式的變化。
焊接速度對焊接過程形式和穩定件的影響不如激光功率和焦點位置那樣顯著,只有焊接速度太大時,由于熱輸入過小而出現無法維持穩定深熔焊過程的情況。實際焊接時,應根據焊件對熔深的要求選擇穩定深熔焊或穩定熱導焊,而要絕對避免模式不穩定焊。
(2)在深熔焊范圍內,焊接參數對熔深的影響:?在穩定深熔焊范圍內,激光功率越高,熔深越大,約為0.7次方的關系;而焊接速變越高,熔深越淺。在一定激光功率和焊接速度條件下焦點處于最佳位置時熔深最大,偏離這個位置,熔深則下降,甚至變為模式不穩定焊接或穩定熱導焊。
(3)保護氣體的影響,保護氣體的主要作用是保護工件在焊接過程中免受氧化;保護聚焦透鏡免受金屬蒸汽污染和液體熔滴的濺射;驅散高功率激光焊接產生的等離子;冷卻工件,減小熱影響區。
保護氣體通常采用氬氣或氦氣,表觀質量要求不高的也可采用氮氣。它們產生等離子體的傾向顯著不同:氦氣因其電離電體高,導熱快,在同樣條件下,比氬氣產生等離子體的傾向小,因而可獲得更大的熔深。在一定范圍內,隨著保護氣體流量的增加,抑制等離子體的傾向增大,因而熔深增加,但增至一定范圍即趨于平穩。
(4)各參數的可監控性分析:在四種焊接參數中,焊接速度和保護氣體流量屬于容易監控和保持穩定的參數,而激光功率和焦點位置則是焊接過程中可能發生波動而難于監控的參數。雖然從激光器輸出的激光功率穩定性很高且容易監控,但由于有導光和聚焦系統的損耗,到達工件的激光功率會發生變化,而這種損耗與光學工件的質量、使用時間及表面污染情況有關,故不易監測,成為焊接質量的不確定因素。光束焦點位置是焊接參數中對焊接質量影響極大而又最難監測和控制的一個因素。目前在生產中需靠人工調節和反復工藝試驗的方法確定合適的焦點位置,以獲得理想的熔深。但在焊接過程中由于工件變形,熱透鏡效應或者空間曲線的多維焊接,焦點位置會發生變化而?可能超出允許的范圍。
對于上述兩種情況,一方面要采用高質量、高穩定性的光學元件,并經常維護,防止污染,保持清潔;另一方面要求發展激光焊接過程實時監測與控制方法,以優化參數,監視到?達工件的激光功率和焦點位置的變化,實現閉環控制,提高激光焊接質量的可靠件和穩定性。
最后,?要注意激光焊接是一個熔化過程。這意味著兩個基底在激光焊接過程中會熔化。這一過程很快,因此整個熱輸入較低。但因為這是一個熔化過程,在焊接不同材料的時候就可能形成易碎的高電阻金屬間化合物。鋁-銅組合特別容易形成金屬間化合物。這些化合物已證明對于微電子設備搭接頭的短期電氣性能和長期機械性能有負面影響。這些金屬間化合物對于鋰電池長期性能的影響尚不確定。
編輯:黃飛
評論
查看更多