1.引言
電機(jī)是工業(yè)生產(chǎn)中主要的耗電設(shè)備,高壓大功率電動(dòng)機(jī)的應(yīng)用更為突出,而這些設(shè)備大部分都存在很大的節(jié)能潛力。所以大力發(fā)展高壓大功率變頻調(diào)速技術(shù)具有時(shí)代的必要性和迫切性。
(1)單元串聯(lián)多重化電壓源型高壓變頻器
單元串聯(lián)多重化電壓源型高壓變頻器利用低壓?jiǎn)蜗嘧冾l器串聯(lián),彌補(bǔ)功率器件IGBT的耐壓能力的不足。所謂多重化,就是每相由幾個(gè)低壓功率單元串聯(lián)組成,各功率單元由一個(gè)多繞組的移相隔離變壓器供電,用高速微處理器實(shí)現(xiàn)控制和以光導(dǎo)纖維隔離驅(qū)動(dòng)。但其存在以下缺點(diǎn):
a) 使用的功率單元及功率器件數(shù)量太多,6kV系統(tǒng)要使用150只功率器件(90只二極管,60只IGBT),裝 置的體積太大,重量大,安裝位置和基建投資成問題;
b)所需高壓電纜太多,系統(tǒng)的內(nèi)阻無形中增大,接線太多,故障點(diǎn)相應(yīng)的增多;
c) 一個(gè)單元損壞時(shí),單元可旁路,但此時(shí)輸出電壓不平衡中心點(diǎn)的電壓是浮動(dòng)的,造成電壓、電流不平衡,從而諧波也相應(yīng)的增大,勉強(qiáng)運(yùn)行時(shí)終 究會(huì)導(dǎo)致電動(dòng)機(jī)的損壞;
d)輸出電壓波形在額定負(fù)載時(shí)尚好,低于25Hz以下畸變突出;
d)輸出電壓波 形在額定負(fù)載時(shí)尚好,低于25Hz以下畸變突出;
e)由于系統(tǒng)中存在著變壓器,系統(tǒng)效率再提高不容易實(shí)現(xiàn);移相變壓器中,6kV 三相6繞組×3(10kV時(shí)需12繞組×3)延邊三角形接法,在三相電壓不平衡(實(shí)際上三相電壓是不可能絕對(duì)平衡的)時(shí),產(chǎn)生的內(nèi)部環(huán)流,必將引起內(nèi)阻的 增加和電流的損耗,也相應(yīng)的就造成了變壓器的銅損增大。此時(shí),再加上變壓器的鐵芯的固有損耗,變壓器的效率就會(huì)降低,也就影響了整個(gè)高壓變頻器的效率。這 種情況在越低于額定負(fù)荷運(yùn)行時(shí),越是顯著。10kV時(shí),變壓器有近400個(gè)接頭、近百根電纜。在額定負(fù)荷時(shí)效率可達(dá)96%,但在輕負(fù)荷時(shí),效率低于 90%。
(2)中性點(diǎn)鉗位三電平PWM變頻器
該系列變頻器采用傳統(tǒng)的電壓型變頻器結(jié)構(gòu)。中性點(diǎn)鉗位三電平PWM變頻器的逆變部 分采用傳統(tǒng)的三電平方式,所以輸出波形中會(huì)不可避免地產(chǎn)生比較大的諧波分量,這是三電平逆變方式所固有的。因此在變頻器的輸出側(cè)必須配置輸出LC濾波器才 能用于普通的鼠籠型電機(jī)。同樣由于諧波的原因,電動(dòng)機(jī)的功率因數(shù)和效率、甚至壽命都會(huì)受到一定的影響,只有在額定工況點(diǎn)才能達(dá)到最佳的工作狀態(tài),但隨著轉(zhuǎn)速的下降,功率因數(shù)和效率都會(huì)相應(yīng)降低。
多電平+多重化高壓變頻器。多電平+多重化高壓變頻器的本意是想解決高壓IGBT的耐壓有限的問題,但此種方式,不僅增加了系統(tǒng)的復(fù)雜性,而且降低了多重化冗余性能好和三電平結(jié)構(gòu)簡(jiǎn)單的優(yōu)點(diǎn)。因此此類變頻器實(shí)際上并不可取。
此類型變頻器的性能價(jià)格優(yōu)勢(shì)并不大,與其同時(shí)采用多電平和多重化兩種技術(shù),還不如采用前面提到的高壓IGBT的多重化變頻器或者三電平變頻器。
(3)電流源型高壓變頻器
功率器件直接串聯(lián)的電流源型高壓變頻器是在線路中串聯(lián)大電感,再將SCR(或GTO、 SGCT等)開關(guān)速度較慢的功率器件直接串聯(lián)而構(gòu)成的。
這種方式雖然使用功率器件少、易于控制電流,但是沒有真正解決高壓功率器 件的串聯(lián)問題。因?yàn)榧词构β势骷霈F(xiàn)故障,由于大電感的限流作用,di/dt受到限制,功率器件雖不易損壞,但帶來的問題是對(duì)電網(wǎng)污染嚴(yán)重、功率因數(shù)低。并且電流源型高壓變頻器對(duì)電網(wǎng)電壓及電機(jī)負(fù)載的變化敏感,無法做成真正的通用型產(chǎn)品。
電流源型高壓變頻器是最早的產(chǎn)品,但凡是電壓型變頻器到達(dá)的地方,它都被迫退出,因?yàn)樵诮?jīng)濟(jì)上、技術(shù)上,它都明顯處于劣勢(shì)。
3.IGBT直接串聯(lián)的直接高壓變頻器
3.1 主電路簡(jiǎn)介
圖1.IGBT直接串聯(lián)高壓變頻
如圖1所示,圖中系統(tǒng)由電網(wǎng)高壓直接經(jīng)高壓斷路器進(jìn)入變頻器,經(jīng)過高壓二極管全橋整流、直流平波電抗器和電容濾波,再通過 逆變器進(jìn)行逆變,加上正弦波濾波器,簡(jiǎn)單易行地實(shí)現(xiàn)高壓變頻輸出,直接供給高壓電動(dòng)機(jī)。
功率器件IGBT直接串聯(lián)的二電平電壓型 高壓變頻器是采用變頻器已有的成熟技術(shù),應(yīng)用獨(dú)特而簡(jiǎn)單的控制技術(shù)成功設(shè)計(jì)出的一種無輸入輸出變壓器、IGBT直接串聯(lián)逆變、輸出效率達(dá)98%的高壓調(diào)速系統(tǒng)。對(duì)于需要快速制動(dòng)的場(chǎng)合,采用直流放電制動(dòng)裝置,如圖2所示:
圖2.具有直流放電制動(dòng)裝置的IGBT直接串聯(lián)高壓變頻器主電路圖
如果需要四象限運(yùn)行,以及需要能量回饋的場(chǎng)合,或輸入電源側(cè)短路容量較小時(shí),也可采用如圖3所示的PWM整流電路,使輸入 電流也真正實(shí)現(xiàn)完美正弦波。
圖3.具備能量回饋和四象限運(yùn)行的IGBT直接串聯(lián)高壓變頻器主電路圖
3.2 IGBT直接串聯(lián)高壓變頻器25Hz、30Hz、40Hz、50Hz電壓、電流輸出波形及諧波圖:
3.3 核心關(guān)鍵技術(shù)
(1)高速功率器件的串聯(lián)技術(shù)
根據(jù)查新,世界 各國(guó)均未生產(chǎn)出IGBT直接串聯(lián)的高壓變頻器。原因正如一些權(quán)威人士所言:“IGBT是不能串聯(lián)的。因?yàn)殚_關(guān)時(shí)間短,微秒級(jí),很難保證所有管子串聯(lián)同時(shí)開關(guān)。否則有的早開,所有的電壓都來加在晚開的管子上,那么這個(gè)1200V的管子加上6000V,只能燒掉,一燒一串,不可能串聯(lián)。”
(2) 正弦波技術(shù)
高壓電機(jī)對(duì)變頻器的輸出電壓波形有嚴(yán)格的要求,是業(yè)內(nèi)人士都知道的常識(shí)。解決變頻器輸出電壓波形,從兩方面著手:一是優(yōu)化 PWM波形;二是研制出特種濾波器。
過去一些人認(rèn)為:“三電平的電壓波形一定優(yōu)于二電平,今后就是低壓變 頻器也應(yīng)采用三電平。”,這種說法可能不太全面。三電平的總諧波含量可能低于二電平,但由于三電平的11次、13次諧波含量特別高,處理起來特別困難,而二電平只要波形優(yōu)化得好,60次以下的諧波皆可大大降低。而對(duì)60次以上的諧波濾波自然容易得多。人們使用三電平是為避免器件串聯(lián)的困難,不得已而為之。
(3) 抗共模電壓技術(shù)
僅解決IGBT的串聯(lián),并不能甩掉輸入變壓器。原因在于共模電壓的存在。在低壓變頻器領(lǐng)域,近年來發(fā)現(xiàn)的電機(jī)軸承損壞,共模電壓就是影響之一,在高壓變頻器的領(lǐng)域中,共模電壓更是必須解決的關(guān)鍵問題之一。共模電壓(也叫零序電壓),是指電動(dòng)機(jī)定子繞組的中心點(diǎn)和地之間的電壓。
共模電壓也是對(duì)外產(chǎn)生干擾的原因,特別是長(zhǎng)線傳輸設(shè)備。無論是電流源還是電壓源變頻器產(chǎn)生共模電壓是必然的。技術(shù)人員根據(jù)共模電壓產(chǎn)生的機(jī)理,采取了“堵和疏”的辦法將共模電壓消滅在變頻器內(nèi)部。
由于采用了上述三項(xiàng)核心關(guān)鍵技術(shù),使IGBT直接高 壓變頻器的效率達(dá)到98%以上。輸出電壓正弦化、共模電壓最小化。適用于任何異步電機(jī)、同步電機(jī),無需降容使用,幾km的長(zhǎng)線傳輸也無問題。對(duì)于傳輸距離 太長(zhǎng)時(shí)應(yīng)考慮線路電壓補(bǔ)償。如提高電壓或增大導(dǎo)線截面等。
評(píng)論
查看更多