高端工業(yè)和醫(yī)學(xué)應(yīng)用需要在整個(gè)溫度范圍提供±1°C至±0.1°C,甚至更高精度的溫度測(cè)量,并且價(jià)格合理、功耗較低。此類應(yīng)用的測(cè)溫范圍(-200°C至+1750°C)通常需要使用熱電偶和鉑電阻溫度(RT)檢測(cè)器,即PRTD。?
PRTD基礎(chǔ)
三種常見(jiàn)的PRTD包括PT100、PT500和PT1000,0°C下分別呈現(xiàn)100Ω、500Ω和1000Ω阻值。也有成本稍高的大阻值傳感器,例如PT10000。PT100曾經(jīng)非常流行,但目前趨勢(shì)是使用阻值更高的傳感器,以稍高或同等成本提供更高的靈敏度和分辨率。典型代表是PT1000,0°C下的電阻值為1kΩ。
Vishay?、JUMO Process Control等多家廠商可提供標(biāo)準(zhǔn)SMD尺寸(類似于表貼電阻封裝)的PRTD,價(jià)格通常不到1美元,具體取決于電阻值、尺寸大小和容限。此類器件大幅降低了溫度傳感器成本,并為設(shè)計(jì)人員提供在任何印制板(PCB)上PRTD替代產(chǎn)品的靈活性。以下電路采用了比較常見(jiàn)的高性價(jià)比PTS1206,是由Vishay Beyschlag提供的1000Ω PRTD1。PRTD傳統(tǒng)測(cè)量方法是采用電流源激勵(lì),如圖1所示2。
圖1. PRTD可采用4線(a)、3線(b)或2線(c)接口檢測(cè)溫度。每種設(shè)計(jì)均向ADC (這里為MAX1403)提供差分信號(hào)。
遠(yuǎn)端測(cè)量且采用不同引線時(shí),圖1a所示4線(開(kāi)爾文連接)架構(gòu)可以獲得最精確的測(cè)量結(jié)果。這種方法中,電流承載線與測(cè)量線完全獨(dú)立。該配置中,OUT1為PRTD提供200μA電流,OUT2保持浮空。對(duì)于RTD沒(méi)有安裝在ADC附近的大多數(shù)工業(yè)應(yīng)用,由于每根引線都會(huì)增加系統(tǒng)成本,引發(fā)可靠性問(wèn)題,所以更傾向于使用較少的引線。
如果引線相似,圖1b所示3線溫度檢測(cè)技術(shù)更經(jīng)濟(jì),且讀數(shù)準(zhǔn)確。這也是其得到普遍使用的原因。MAX1403 ADC的兩個(gè)匹配電流源抵消了引線電阻的IR誤差。OUT1和OUT2均源出200μA電流。
圖1c所示2線技術(shù)最為經(jīng)濟(jì),但只用于已知引線寄生電阻且電阻固定不變的場(chǎng)合。通常利用微處理器或DSP的內(nèi)部計(jì)算對(duì)引線的IR誤差進(jìn)行補(bǔ)償。由于PT1000 PRTD較高的阻值,受引線電阻的影響較小,同時(shí)也降低了自身發(fā)熱產(chǎn)生的誤差,所以,即使采用2線配置也能直接連接ADC。
MAX11200?ADC可以采用不同類型的PRTD,表1列出了該ADC的部分重要特性。
表1. MAX11200的主要技術(shù)指標(biāo)
? | MAX11200 | Comments |
Sample rate (sps) | 10 to 120 | The MAX11200's variable oversampling rate can be optimized for low noise, and for -150dB line-noise rejection at 50Hz or 60Hz. |
Channels | 1 | GPIOs allow external?multiplexer?control for multichannel measurements. |
INL (max, ppm) | ±10 | Provides very good measurement linearity |
Offset error (μV) | ±1 | Provides almost zero offset measurements |
Noise-free resolution (bits) | 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps | Very high?dynamic range?with low power |
VDD?(V) |
AVDD (2.7 to 3.6) DVDD (1.7 to 3.6) |
AVDD and DVDD ranges cover the industry's popular power-supply ranges. |
ICC?(max, μA) | 300 | Highest resolution-per-unit power in the industry; ideal for portable applications |
GPIOs | Allows external device control, including local multiplexer control. | |
Input range | 0 to VREF, ±VREF | Wide input ranges |
Package | 16-pin?QSOP, 10-pin μMAX? (15mm2) | 10-pin μMAX offers very small size for space-constrained designs. |
?
作為電流激勵(lì)的替代方案,可以采用高精度電壓源激勵(lì)PRTD。對(duì)于較高阻值的PRTD,電壓激勵(lì)更合適,可以利用ADC的電壓基準(zhǔn)為PRTD提供偏壓。PRTD可直接連接到ADC,ADC基準(zhǔn)通過(guò)一個(gè)高精度電阻提供PRTD偏置電流(圖2)。ADC即可以高精度比例測(cè)量溫度。
圖2. 該電路采用電壓激勵(lì),非常適合配合高阻值PRTD工作。
假設(shè)引線電阻的量級(jí)遠(yuǎn)低于RA和RT,可采用下式計(jì)算:
VRTD?= VREF?× (RT/(RA?+ RT)) | (式1) |
式中,RA為限流電阻;RT為t°C時(shí)的PRTD電阻;VRTD為PRTD電壓;VREF為ADC基準(zhǔn)電壓。同時(shí):
VRTD?= VREF?× (AADC/FS) | (式2) |
式中,AADC為ADC輸出編碼,F(xiàn)S為ADC的滿幅編碼(即,對(duì)于單端配置的MAX11200,為223-1)。合并式1和2:
RT?= RA?× (AADC/(FS - AADC)) | (式3) |
從式3可知,RA必須滿足RT指標(biāo)規(guī)定的精度要求。
PRTD選擇和誤差分析
引線電阻引起的誤差
由于PRTD為電阻傳感器,它與控制板之間連線的任何電阻都會(huì)增大誤差,如圖3所示。
圖3. 2線檢測(cè)技術(shù)中,引線的IR壓降會(huì)在ADC產(chǎn)生誤差。
為了估算2線電路中的誤差,將連接線總長(zhǎng)與美國(guó)線規(guī)(AWG)銅線的“電阻/英尺”值相乘,如表2所示。
表2. 線規(guī)電阻
Copper Lead Wire (AWG) | Ω/Foot (+25°C) |
16 | 0.0041 |
18 | 0.0065 |
20 | 0.0103 |
22 | 0.0161 |
24 | 0.0257 |
26 | 0.0418 |
28 | 0.0649 |
舉例說(shuō)明,假設(shè)采用2根3英尺長(zhǎng)的AWG 22導(dǎo)線連接PRTD,引線電阻RW為:
RW?= 2 × (3ft.) × (0.0161Ω/ft.) = 0.1Ω | (式4) |
引線造成的溫度讀數(shù)誤差為TWER,其中TWER?= RW/S,S為平均PRTD靈敏度。
對(duì)于PT100 (PTS 1206,100Ω)器件1,平均靈敏度S = 0.385Ω/°C,因此:
TWER?= RW/0.385 = 0.26°C | (式5) |
對(duì)于PT1000 (PTS 1206,1000Ω)器件1,平均靈敏度S = 3.85Ω/°C,因此:
TWER?= RW/3.85 = 0.026°C | (式6) |
根據(jù)IEC 60751標(biāo)準(zhǔn),對(duì)于 PT1000,TWER?= 0.026°C,比CLASS F0.3的±0.30°C容限要求低一個(gè)數(shù)量級(jí)。這意味著PT1000可直接采用3英尺長(zhǎng)的2線配置,無(wú)需任何引線補(bǔ)償方法。而PT100,TWER為0.26°C,與±0.30°C容限相當(dāng),在大多數(shù)高精度應(yīng)用中,這一誤差水平不可接受。從本例可以看出,大阻值PRTD在2線電路中的優(yōu)勢(shì)。
PRTD自熱引起的誤差
PRTD的另一個(gè)誤差源是激勵(lì)電流通過(guò)RTD元件時(shí),傳感器本身產(chǎn)生的熱量。激勵(lì)電流流過(guò)RTD電阻,產(chǎn)生測(cè)量電壓。為了使輸出電壓高于ADC的電壓噪聲電平,應(yīng)保持足夠高的激勵(lì)電流;而激勵(lì)電流產(chǎn)生的功耗會(huì)使溫度傳感器的溫度升高,導(dǎo)致RTD電阻升高,使其高于實(shí)測(cè)溫度下的電阻值。利用制造商數(shù)據(jù)手冊(cè)提供的封裝熱阻,可以計(jì)算出RTD功耗引起的溫度誤差。利用下式計(jì)算自熱引起的溫度誤差(TTERR,單位為°C):
TTERR?= IEXT2 × RT?× KTPACK | (式7) |
式中,IEXT為流過(guò)電阻檢測(cè)元件的激勵(lì)電流;RT為當(dāng)前溫度T°C下的PRTD電阻;KTPACK為自熱誤差系數(shù)(0.7°C/mW)1。
圖2中的最佳限流電阻RA由式7的TERR和測(cè)量系統(tǒng)使用的基準(zhǔn)電壓(VREF?= 3V)確定,表3列出了100Ω PTS 1206和1000Ω PTS 1206的RA。
表3. 溫度誤差計(jì)算
VREF | KTPACK | T°C | RT100 | RT1000 | RA100 | RA1000 | TERR100 | TERR1000 | IEXT100 | IEXT1000 | VRT100 | VRT1000 |
(V) | (C/mW) | (°C) | (Ω) | (Ω) | (Ω) | (Ω) | (°C) | (°C) | (μA) | (μA) | (mV) | (mV) |
3 | 0.7 | -55 | 78.3 | 783.2 | 8200 | 27000 | 0.015 | 0.013 | 362.4 | 108.0 | 28.4 | 84.6 |
3 | 0.7 | 0 | 100.0 | 1000.0 | 8200 | 27000 | 0.019 | 0.016 | 361.4 | 107.1 | 36.1 | 107.1 |
3 | 0.7 | 20 | 107.8 | 1077.9 | 8200 | 27000 | 0.020 | 0.018 | 361.1 | 106.8 | 38.9 | 115.2 |
3 | 0.7 | 155 | 159.2 | 1591.9 | 8200 | 27000 | 0.029 | 0.025 | 358.9 | 104.9 | 57.1 | 167.0 |
?
對(duì)于100Ω PTS 1206,采用RA?= 8.2kΩ;對(duì)于1000Ω PTS 120,采用RA?= 27.0kΩ。兩種情況下,最大溫度誤差TERR均介于0.025°C和0.029°C之間,比CLASS F0.3的±0.30°C容限低一個(gè)數(shù)量級(jí)。顯而易見(jiàn),平均激勵(lì)電流IEXT100和IEXT1000在表3所示的溫度范圍內(nèi)非常穩(wěn)定。
從表3還可以看出,RT100和RT1000產(chǎn)品的最大激勵(lì)電流相差非常大:IEXT1000 = 108μA,IEXT100 = 362.4μA。由于RT1000的激勵(lì)電流不到RT100電流的三分之一,所以RT1000比RT100更適合低功耗(便攜式)儀器。RA電阻應(yīng)為金屬薄膜電阻,精度為±0.1%或更好,額定功率至少1/4W,須具有低溫度系數(shù)。為確保RA電阻滿足設(shè)計(jì)要求,應(yīng)選擇優(yōu)秀廠商的產(chǎn)品。
PRTD線性誤差
PRTD近似于線性特性,根據(jù)溫度范圍和其它條件的不同,通過(guò)計(jì)算PRTD電阻在-20°C至+100°C溫度范圍的變化,進(jìn)行線性逼近:
R(t) ≈ R(0)(1 + T ×?a) | (式8) |
R(t)為t°C下的PRTD電阻;R(0)為0°C下的PRTD電阻;T為PRTD溫度,單位為°C;按照IEC 60751標(biāo)準(zhǔn),常數(shù)a為0.00385Ω/Ω/°C (本例中,a?= 0.00385Ω/Ω/°C實(shí)際上定義為0°C至100°C之間的平均溫度系數(shù))1。
基于式8的PRTD計(jì)算如表4所示。
表4. -20°C至+100°C溫度范圍下的PRTD計(jì)算
a | Temp | RRTD1000 Lin | RRTD1000 Nom | RA | VREF | VRTD | ADC Code | Err |
(Ω/Ω/°C) | (°C) | (Ω) | (Ω) | (Ω) | (V) | (V) | (LSB) | (%) |
3.85E-03 | -20 | 923.00 | 921.60 | 27000 | 3 | 0.0991656 | 277286 | 0.15 |
3.85E-03 | -10 | 961.50 | 960.90 | 27000 | 3 | 0.1031597 | 288454 | 0.06 |
3.85E-03 | 0 | 1000.00 | 1000.00 | 27000 | 3 | 0.1071429 | 299592 | 0.00 |
3.85E-03 | 10 | 1038.50 | 1039.00 | 27000 | 3 | 0.1111151 | 310699 | -0.05 |
3.85E-03 | 20 | 1077.00 | 1077.90 | 27000 | 3 | 0.1150764 | 321776 | -0.08 |
3.85E-03 | 30 | 1115.50 | 1116.70 | 27000 | 3 | 0.1190269 | 332822 | -0.11 |
3.85E-03 | 40 | 1154.00 | 1155.40 | 27000 | 3 | 0.1229665 | 343838 | -0.12 |
3.85E-03 | 50 | 1192.50 | 1194.00 | 27000 | 3 | 0.1268955 | 354824 | -0.13 |
3.85E-03 | 60 | 1231.00 | 1232.40 | 27000 | 3 | 0.1308136 | 365780 | -0.11 |
3.85E-03 | 100 | 1385.00 | 1385.00 | 27000 | 3 | 0.1463801 | 409308 | 0.00 |
?
表4中,RRTD1000 Lin欄的數(shù)據(jù)是根據(jù)式8的線性逼近。RRTD1000 Nom按照制造規(guī)范EN 60751:2008列出了標(biāo)稱PTS 1206Ω至1000Ω的電阻值;線性誤差(Err)列出了規(guī)定溫度范圍的線性誤差值,均在±0.15%以內(nèi),優(yōu)于PTS 1206 CLASS F0.3的容限(±0.30°C)。
按照表4,利用MAX11200 ADC (圖2)進(jìn)行實(shí)測(cè)的結(jié)果顯示:溫度誤差仍保持在CLASS F0.3的誤差限制以內(nèi)。對(duì)于更寬范圍和更高精度的溫度測(cè)量,PRTD測(cè)溫標(biāo)準(zhǔn)(EN 60751:2008)定義了鉑電阻隨溫度變化的非線性數(shù)學(xué)模型,稱為Callendar-Van Dusen方程。
在0°C至+859°C溫度范圍,線性方程需要基于下式中的兩個(gè)系數(shù):
R(t) = R(0)(1 + A × t + B × t2) | (式9) |
在-200°C至0°C溫度范圍:
R(t) = R(0)[1 + A × t + B × t2 + (t - 100)C × t3] | (式10) |
式中,R(t)為t°C下的PRTD電阻;R(0)為0°C下的PRTD電阻;t為PRTD溫度,單位為°C。式9和式10中,A、B、C為RTD制造商提供的校準(zhǔn)系數(shù),如IEC 60751標(biāo)準(zhǔn)規(guī)定:
A = 3.9083 × 10 - 3°C-1
B = - 5.775 × 10 - 7°C-2
C = - 4.183 × 10 - 12°C-4
從式8可以看出,溫度超出0°C至+200°C范圍時(shí),非線性誤差增大(圖4,粉色曲線)。利用式9 (藍(lán)色曲線),可以將超低溫度下的誤差降至可以忽略不計(jì)的水平。
圖4. PRTD線性誤差隨溫度變化的關(guān)系曲線,利用式8 (粉色曲線)和式9 (藍(lán)色曲線)計(jì)算得到。
圖5是對(duì)圖4較窄溫度范圍曲線的放大。采用式8時(shí),較小溫度范圍(-20°C至+100°C)內(nèi)的誤差保持在±0.15%以內(nèi);采用式9時(shí),這些誤差可以忽略不計(jì)。在較寬的溫度范圍(-200°C至+800°C)內(nèi)進(jìn)行高精度測(cè)量時(shí),需要利用式9、式10進(jìn)行線性化處理(有關(guān)算法在后續(xù)文章討論)。
圖5. 圖4的放大視圖,為兩條曲線相交區(qū)域。
MAX11200的測(cè)試分辨率
MAX11200是一款低功耗、24位、Σ-Δ ADC,適合寬動(dòng)態(tài)范圍、高分辨率(無(wú)噪聲)的低功耗應(yīng)用。利用這款A(yù)DC,可以由下面的式11和式12計(jì)算得到圖2所示電路的溫度分辨率:
RTLSB?= (VREF?× (TCMAX?- TCMIN))/(FS × (VRTMAX?- VRTMIN)) | (式11) |
RTNFR?= (VREF?× (TCMAX?- TCMIN))/(NFR × (VRTMAX?- VRTMIN)) | (式12) |
式中,RTLSB為PRTD 1 LSB的分辨率;RTNFR為PRTD無(wú)噪聲分辨率(NFR);VREF為基準(zhǔn)電壓;T°CMAX為最大測(cè)量溫度;T°CMIN為最小測(cè)量溫度;VRTMAX為PRTD在最大測(cè)量溫度下的壓降;VRTMIN為PRTD在最小測(cè)量溫度下的壓降;FS為MAX11200采用單端配置時(shí)的ADC滿量程編碼(223-1);NFR為MAX11200采用單端配置時(shí)的無(wú)噪聲分辨率(10sps時(shí)為220-1)。
表5列出了利用式11和式12計(jì)算的PTS1206-100Ω和PTS1206-1000Ω測(cè)量分辨率。
表5. 溫度測(cè)量分辨率
VREF | TC | RT100 | RT1000 | RA?(100) | RA?(1000) | RTLSB?(100) | RTLSB?(1000) | RTNFR?(100) | RTNFR?(1000) |
(V) | (°C) | (Ω) | (Ω) | (Ω) | (Ω) | (°C/LSB) | (°C/LSB) | (°C/NFR) | (°C/NFR) |
3 | -55 | 78.32 | 783.19 | 8200 | 27000 | ? | ? | ? | ? |
3 | 0 | 100 | 1000 | 8200 | 27000 | 0.00317 | 0.000926 | 0.021 | 0.0073 |
3 | 20 | 107.79 | 1077.9 | 8200 | 27000 | ? | ? | ? | ? |
3 | 155 | 159.19 | 1591.91 | 8200 | 27000 | ? | ? | ? | ? |
?
表5為-55°C至+155°C溫度范圍內(nèi),°C/LSB誤差和°C/NFR誤差的計(jì)算值。無(wú)噪聲分辨率(NFR)表示ADC能夠區(qū)分的最小溫度值。如果RTNFR1000為0.007°C/NFR,給定溫度范圍的分辨率無(wú)疑優(yōu)于0.05°C,遠(yuǎn)遠(yuǎn)滿足大多數(shù)工業(yè)、醫(yī)療應(yīng)用要求。
此類應(yīng)用中,對(duì)ADC要求的另一考慮是不同溫度點(diǎn)對(duì)應(yīng)的電壓水平,如表6所示。最后一行顯示PRTD100和PRTD1000的差分輸出電壓范圍。右側(cè)一組公式計(jì)算MAX11200 ADC的無(wú)噪聲分辨率。
表6. 圖6中ADC的溫度測(cè)量范圍
|
? |
Noise free codes = (VMAX?- VMIN)/Input referred noise Noise free codes = 82.46mV/2.86μVP-P Noise free codes = 28,822 codes Temp (accy) = 210°C/28.82K Temp (accy) = 0.007°C |
?
注意,PRTD應(yīng)用中輸出信號(hào)的總范圍大約82mV。MAX11200具有極低的輸入?yún)⒖荚肼暎?0sps采樣率下570nV,在210°C量程范圍可提供0.007°C的無(wú)噪聲分辨率。
圖6. 本文用于測(cè)量溫度的高精度數(shù)據(jù)采集系統(tǒng)(DAS)框圖。基于MAX11200 ADC (圖3)的DAS包括簡(jiǎn)單校準(zhǔn)和線性化處理功能。
如圖6所示,MAX11200的GPIO1引腳設(shè)置為輸出,控制繼電器校準(zhǔn)開(kāi)關(guān),選擇固定RCAL電阻或PRTD。這種多功能性提高了系統(tǒng)精度,并減少RA和RT初始值的計(jì)算需求。
結(jié)論
最近幾年,隨著PRTD價(jià)格的下降、封裝尺寸的減小,這類器件已廣泛用于高精度溫度檢測(cè)。溫度檢測(cè)系統(tǒng)中,如果ADC和表貼PRTD直接連接,則要求使用低噪聲ADC (例如MAX11200)。PRTD和ADC相結(jié)合,提供理想用于便攜式測(cè)試設(shè)備的溫度測(cè)量方案。這一組合具有高性能和高成效。
評(píng)論
查看更多