檢波器類(lèi)型
采用數(shù)字顯示,我們需要確定對(duì)每個(gè)顯示數(shù)據(jù)點(diǎn),應(yīng)該用什么樣的值來(lái)代表。無(wú)論我們?cè)陲@示器上使用多少個(gè)數(shù)據(jù)點(diǎn),每個(gè)數(shù)據(jù)點(diǎn)必須能代表某個(gè)頻率范圍或某段時(shí)間間隔(盡管在討論頻譜分析儀時(shí)通常并不會(huì)用時(shí)間)內(nèi)出現(xiàn)的信號(hào)。
這個(gè)過(guò)程好似先將某個(gè)時(shí)間間隔的數(shù)據(jù)都放到一個(gè)信號(hào)收集單元(bucket)內(nèi),然后運(yùn)用某一種必要的數(shù)學(xué)運(yùn)算從這個(gè)信號(hào)收集單元中取出我們想要的信息比特。隨后這些數(shù)據(jù)被放入存儲(chǔ)器再被寫(xiě)到顯示器上。這種方法提供了很大的靈活性。
這里我們將要討論 6 種不同類(lèi)型的檢波器。
在圖 2-18 中,每個(gè)信號(hào)收集單元內(nèi)包含由以下公式?jīng)Q定的掃寬和時(shí)間幀的數(shù)據(jù):
圖 2-18. 1001 個(gè)跡線點(diǎn)(信號(hào)收集單元)中的
每個(gè)點(diǎn)都覆蓋了 100 kHz 的頻率掃寬和 0.01 ms 的時(shí)間掃寬
頻率:信號(hào)收集單元的寬度 = 掃寬/(跡線點(diǎn)數(shù) – 1)
時(shí)間:信號(hào)收集單元的寬度 = 掃描時(shí)間/(跡線點(diǎn)數(shù) – 1)
不同儀器的采樣速率不同,但減小掃寬和/或增加掃描時(shí)間能夠獲得更高的精度,因?yàn)槿魏我环N情況都會(huì)增加信號(hào)收集單元所含的樣本數(shù)。采用數(shù)字中頻濾波器的分析儀,采樣速率和內(nèi)插特性按照等效于連續(xù)時(shí)間處理來(lái)設(shè)計(jì)。
“信號(hào)收集單元”的概念很重要,它能夠幫我們區(qū)分這 6 種顯示檢波器類(lèi)型:
– 取樣檢波
– 正峰值檢波(簡(jiǎn)稱(chēng)峰值檢波)
– 負(fù)峰值檢波
– 正態(tài)檢波(Normal)
– 平均檢波
– 準(zhǔn)峰值檢波
圖 2-19. 存儲(chǔ)器中存入的跡線點(diǎn)基于不同的檢波器算法
前三種檢波類(lèi)型(取樣、峰值和負(fù)峰值)比較容易理解,如圖 2-19 中的直觀表示。正態(tài)、平均和準(zhǔn)峰值檢波要復(fù)雜一些,我們稍后進(jìn)行討論。
我們回到之前的問(wèn)題:如何用數(shù)字技術(shù)盡可能如實(shí)地顯示模擬系統(tǒng)?我們來(lái)設(shè)想圖 2-17 所描述的情況,即顯示的信號(hào)只包含噪聲和一個(gè)連續(xù)波(CW)信號(hào)。
取樣檢波
作為第一種方法,我們只選取每個(gè)信號(hào)收集單元的中間位置的瞬時(shí)電平值(如圖 2-19)作為數(shù)據(jù)點(diǎn),這就是取樣檢波模式。為使顯示跡線看起來(lái)是連續(xù)的,我們?cè)O(shè)計(jì)了一種能描繪出各點(diǎn)之間矢量關(guān)系的系統(tǒng)。比較圖 2-17 和 2-20,可以看出我們獲得了一個(gè)還算合理的顯示。當(dāng)然,跡線上的點(diǎn)數(shù)越多,就越能真實(shí)地再現(xiàn)模擬信號(hào)。不同頻譜儀的可用顯示點(diǎn)數(shù)是不一樣的,對(duì)于 X 系列信號(hào)分析儀,頻域跡線的取樣顯示點(diǎn)數(shù)可以從最少 1 個(gè)點(diǎn)到最多 40001 個(gè)點(diǎn)。如圖 2-21 所示,增加取樣點(diǎn)確實(shí)可使結(jié)果更接近于模擬信號(hào)。
雖然這種取樣檢波方式能很好的體現(xiàn)噪聲的隨機(jī)性,但并不適合于分析正弦波。如果在高性能 X 系列信號(hào)分析儀上觀察一個(gè) 100 MHz 的梳狀信號(hào),分析儀的掃寬可以被設(shè)置為 0 至 26.5 GHz即便使用 1001 個(gè)顯示點(diǎn),每個(gè)顯示點(diǎn)代表 26.5 MHz 的頻率掃寬(信號(hào)收集單元),也遠(yuǎn)大于 8 MHz 的最大分辨率帶寬。
結(jié)果,采用取樣檢波模式時(shí),只有當(dāng)梳狀信號(hào)的混頻分量剛好處在中頻的中心處時(shí),它的幅度才能被顯示出來(lái)。圖 2-22a 是一個(gè)使用取樣檢波的帶寬為 750 Hz、掃寬為 10 MHz 的顯示。它的梳狀信號(hào)幅度應(yīng)該與圖 2-22b 所示(使用峰值檢波)的實(shí)際信號(hào)基本一致。可以得出,取樣檢波方式并不適用于所有信號(hào),也不能反映顯示信號(hào)的真實(shí)峰值。當(dāng)分辨率帶寬小于采樣間隔(如信號(hào)收集單元的寬度)時(shí),取樣檢波模式會(huì)給出錯(cuò)誤的結(jié)果。
圖 2-22a. 取樣檢波模式下的帶寬為 250 kHz、掃寬為 10 MHz 的梳狀信號(hào)
圖 2-22b. 在 10 MHz 掃寬內(nèi),采用(正)峰值檢波得到的實(shí)際梳狀信號(hào)
(正)峰值檢波
確保所有正弦波的真實(shí)幅度都能被記錄的一種方法是顯示每個(gè)信號(hào)收集單元內(nèi)出現(xiàn)的最大值,這就是正峰值檢波方式,或者叫峰值檢波,如圖 2-22b 所示。峰值檢波是許多頻譜分析儀默認(rèn)的檢波方式,因?yàn)闊o(wú)論分辨率帶寬和信號(hào)收集單元的寬度之間的關(guān)系如何,它都能保證不丟失任何正弦信號(hào)。不過(guò),與取樣檢波方式不同的是,由于峰值檢波只顯示每個(gè)信號(hào)收集單元內(nèi)的最大值而忽略了實(shí)際的噪聲隨機(jī)性,所以在反映隨機(jī)噪聲方面并不理想。因此,將峰值檢波作為第一檢波方式的頻譜儀一般還提供取樣檢波作為補(bǔ)充。
負(fù)峰值檢波
負(fù)峰值檢波方式顯示的是每個(gè)信號(hào)收集單元中的最小值。大多數(shù)頻譜儀都提供這種檢波方式,盡管它不像其他方式那么常用。對(duì)于 EMC 測(cè)量,想要從脈沖信號(hào)中區(qū)分出 CW 信號(hào),負(fù)峰值檢波會(huì)很有用。在本應(yīng)用指南后面的內(nèi)容里,我們將看到負(fù)峰值檢波還能應(yīng)用于使用外部混頻器進(jìn)行高頻測(cè)量時(shí)的信號(hào)識(shí)別。
正態(tài)檢波
為了提供比峰值檢波更好的對(duì)隨機(jī)噪聲的直觀顯示并避免取樣檢波模式顯示信號(hào)的丟失問(wèn)題,許多頻譜儀還提供正態(tài)檢波模式(俗稱(chēng) rosenfell9 模式)。如果信號(hào)像用正峰值和負(fù)峰值檢波所確定的那樣既有上升、又有下降,則該算法將這種信號(hào)歸類(lèi)為噪聲信號(hào)。
Roesnfell 并不是人名,而是一種運(yùn)算方法的描述,用以測(cè)試在給定數(shù)據(jù)點(diǎn)代表的信號(hào)收集單元內(nèi)的信號(hào)是上升還是下降,有時(shí)也寫(xiě)成 rose’n’fell。
在這種情況下,用奇數(shù)號(hào)的數(shù)據(jù)點(diǎn)來(lái)顯示信號(hào)收集單元中的最大值,用偶數(shù)號(hào)的數(shù)據(jù)點(diǎn)來(lái)顯示最小值。如圖 2-25 所示。正態(tài)檢波模式和取樣檢波模式在圖 2-23a 和 2-13b中比較。(由于取樣檢波器在測(cè)量噪聲時(shí)非常有效,所以它常被用于噪聲游標(biāo)應(yīng)用。同樣在信道功率測(cè)量和鄰道功率測(cè)量中需要一種檢波類(lèi)型,可以提供無(wú)任何傾 向 的結(jié)果,此時(shí)適合使用峰值檢波。對(duì)沒(méi)有平均檢波功能的頻譜儀來(lái)說(shuō),取樣檢波是最好的選擇。)
當(dāng)遇到正弦信號(hào)時(shí)會(huì)是什么情況呢?我們知道,當(dāng)混頻分量經(jīng)過(guò)中頻濾波器時(shí),頻譜儀的顯示器上會(huì)描繪出濾波器的特性曲線。如果濾波器的曲線覆蓋了許多個(gè)顯示點(diǎn),便會(huì)出現(xiàn)下述情況:顯示信號(hào)只在混頻分量接近濾波器的中心頻率時(shí)才上升,也只在混頻分量遠(yuǎn)離濾波器中心頻率時(shí)才下降。無(wú)論哪一種情況,正峰值和負(fù)峰值檢波都能檢測(cè)出單一方向上的幅度變化,并根據(jù)正態(tài)檢波算法,顯示每個(gè)信號(hào)收集單元內(nèi)的最大值,如圖 2-24 所示。
當(dāng)分辨率帶寬比信號(hào)收集單元窄時(shí)又會(huì)怎樣呢?這時(shí)信號(hào)在信號(hào)收集單元內(nèi)既有上升又有下降。如果信號(hào)收集單元恰好是奇數(shù)號(hào),則一切正常,信號(hào)收集單元內(nèi)的最大值將作為下一個(gè)數(shù)據(jù)點(diǎn)直接被繪出。但是,如果信號(hào)收集單元是偶數(shù)號(hào)的,那么描繪出的將是信號(hào)收集單元內(nèi)的最小值。根據(jù)分辨率帶寬和信號(hào)收集單元寬度的比值,最小值可能部分或完全不同于真實(shí)峰值(我們希望顯示的值)。在信號(hào)收集單元寬度遠(yuǎn)大于分辨率帶寬的極端情況下,信號(hào)收集單元內(nèi)的最大值和最小值之差將是信號(hào)峰值和噪聲之間的差值,圖 2-25 的示例正是如此。觀察第 6 個(gè)信號(hào)收集單元,當(dāng)前信號(hào)收集單元中的峰值總是與前一個(gè)信號(hào)收集單元中的峰值相比較,當(dāng)信號(hào)單元為奇數(shù)號(hào)時(shí)(如第 7 個(gè)單元)就顯示兩者中的較大值。此峰值實(shí)際上發(fā)生在第6 個(gè)信號(hào)收集單元,但在第 7 個(gè)單元才被顯示出來(lái)。
圖 2-24. 當(dāng)信號(hào)收集單元內(nèi)的值只增大或只減小時(shí),正態(tài)檢波顯示該單元內(nèi)的最大值
正態(tài)檢波算法
?
如果信號(hào)值在一個(gè)信號(hào)收集單元內(nèi)既有上升又有下降:則偶數(shù)號(hào)信號(hào)收集單元將顯示該單元內(nèi)的最小值(負(fù)峰值)。并記錄最大值,然后在奇數(shù)號(hào)信號(hào)收集單元中將當(dāng)前單元內(nèi)的峰值與之前(記錄的)一個(gè)單元的峰值進(jìn)行比較并顯示兩者中的較大值(正峰值)。如果信號(hào)在一個(gè)信號(hào)收集單元內(nèi)只上升或者只減小,則顯示峰值,如圖 2-25所示。
這個(gè)處理過(guò)程可能引起數(shù)據(jù)點(diǎn)的最大值顯示過(guò)于偏向右方,但此偏移量通常只占掃寬的一個(gè)很小的百分?jǐn)?shù)。一些頻譜分析儀,例如高性能 X 系列信號(hào)分析儀,通過(guò)調(diào)節(jié)本振的起止頻率來(lái)補(bǔ)償這種潛在的影響。
另一種錯(cuò)誤是顯示峰值有兩個(gè)而實(shí)際峰值只存在一個(gè),圖 2-26 顯示出可能發(fā)生這種情況的例子。使用較寬分辨率帶寬并采用峰值檢波時(shí)兩個(gè)峰值輪廓被顯示出來(lái)。
因此峰值檢波最適用于從噪聲中定位 CW 信號(hào),取樣檢波最適用于測(cè)量噪聲,而既要觀察信號(hào)又要觀察噪聲時(shí)采用正態(tài)檢波最為合適。
圖 2-25. 正態(tài)檢波算法所選擇的顯示跡線點(diǎn)
圖 2-26. 正態(tài)檢波顯示出兩個(gè)峰值而實(shí)際只存在一個(gè)
平均檢波
雖然現(xiàn)代數(shù)字調(diào)制方案具有類(lèi)噪聲特性,但取樣檢波不能提供我們所需的所有信息。比如在測(cè)量一個(gè) W-CDMA 信號(hào)的信道功率時(shí),我們需要集成信號(hào)的均方根值,這個(gè)測(cè)量過(guò)程涉及到頻譜儀一定頻率范圍內(nèi)的信號(hào)收集單元的總功率,取樣檢波并不能提供這個(gè)信息。
雖然一般頻譜儀是在每個(gè)信號(hào)收集單元內(nèi)多次收集幅度數(shù)據(jù),但取樣檢波只保留這些數(shù)據(jù)中的一個(gè)值而忽略其他值。而平均檢波會(huì)使用該時(shí)間(和頻率)間隔內(nèi)的該信號(hào)收集單元內(nèi)所有數(shù)據(jù),一旦數(shù)據(jù)被數(shù)字化并且我們知道其實(shí)現(xiàn)的環(huán)境,便可以將數(shù)據(jù)以多種方法處理從而獲得想要的結(jié)果。
某些頻譜儀將功率(基于電壓的均方根值)取平均的檢波稱(chēng)為 rms(均方根) 檢波。Keysight X 系列信號(hào)分析儀的平均檢波功能包括功率平均、電壓平均和信號(hào)的對(duì)數(shù)平均,不同的平均類(lèi)型可以通過(guò)按鍵單獨(dú)選擇:
功率(rms)平均是對(duì)信號(hào)的均方根電平取平均值,這是將一個(gè)信號(hào)收集單元內(nèi)所測(cè)得的電壓值取平方和再開(kāi)方然后除以頻譜儀輸入特性阻抗(通常為 50 Ω)而得到。功率平均計(jì)算出真實(shí)的平均功率,最適用于測(cè)量復(fù)雜信號(hào)的功率。
電壓平均是將一個(gè)信號(hào)收集單元內(nèi)測(cè)得的信號(hào)包絡(luò)的線性電壓值取平均。在 EMI 測(cè)試中通常用這種方法來(lái)測(cè)量窄帶信號(hào)(這部分內(nèi)容將在下一節(jié)做進(jìn)一步討論)。電壓平均還可以用來(lái)觀察 AM 信號(hào)或脈沖調(diào)制信號(hào)(如雷達(dá)信號(hào)、TDMA 發(fā)射信號(hào))的上升和下降情況。
對(duì)數(shù)功率(視頻)平均是將一個(gè)信號(hào)收集單元內(nèi)所測(cè)得的信號(hào)包絡(luò)的對(duì)數(shù)幅度值(單位為 dB)取平均。它最適合用來(lái)觀察正弦信號(hào),特別是那些靠近噪聲的信號(hào)。11
因此,使用功率為平均類(lèi)型的平均檢波方式提供的是基于 rms 電壓值的真實(shí)平均功率,而平均類(lèi)型為電壓的檢波器則可以看作是通用的平均檢波器。平均類(lèi)型為對(duì)數(shù)的檢波器沒(méi)有其他等效方式。
采用平均檢波測(cè)量功率較取樣檢波有所改進(jìn)。取樣檢波需要進(jìn)行多次掃描以獲取足夠的數(shù)據(jù)點(diǎn)來(lái)提供精確的平均功率信息。平均檢波使得對(duì)信道功率的測(cè)量從某范圍內(nèi)信號(hào)收集單元的求和變成代表著頻譜儀某段頻率的時(shí)間間隔的合成。在快速傅立葉變換(FFT)頻譜儀12中,用于測(cè)量信道功率的值由顯示數(shù)據(jù)點(diǎn)的和變?yōu)榱?FFT 變換點(diǎn)之和。
在掃頻和FFT兩種模式下,這種合成捕獲所有可用的功率信息,而不像取樣檢波那樣只捕獲取樣點(diǎn)的功率信息。所以當(dāng)測(cè)量時(shí)間相同時(shí),平均檢波的結(jié)果一致性更高。在掃描分析時(shí)也可以簡(jiǎn)單地通過(guò)延長(zhǎng)掃描時(shí)間來(lái)提高測(cè)量結(jié)果的穩(wěn)定性。
EMI 檢波器:平均檢波和準(zhǔn)峰值檢波
平均檢波的一個(gè)重要應(yīng)用是用于檢測(cè)設(shè)備的電磁干擾(EMI)特性。在這種應(yīng)用中,上一節(jié)所述的電壓平均方式可以測(cè)量到可能被寬帶脈沖噪聲所掩蓋的窄帶信號(hào)。在 EMI 測(cè)試儀器中所使用的平均檢波將取出待測(cè)的包絡(luò)并使其通過(guò)一個(gè)帶寬遠(yuǎn)小于 RBW 的低通濾波器,此濾波器對(duì)信號(hào)的高頻分量(如噪聲)做積分(取平均)運(yùn)算。若要在一個(gè)沒(méi)有電壓平均檢波功能的老式頻譜分析儀中實(shí)現(xiàn)這種檢波類(lèi)型,需將頻譜儀設(shè)置為線性模式并選擇一個(gè)視頻濾波器,它的截止頻率需小于被測(cè)信號(hào)的最小 PRF(脈沖重復(fù)頻率)。
準(zhǔn)峰值檢波(QPD)同樣也用于 EMI 測(cè)試中。QPD 是峰值檢波的一種加權(quán)形式,它的測(cè)量值隨被測(cè)信號(hào)重復(fù)速率的下降而減小。也就是,一個(gè)給定峰值幅度并且脈沖重復(fù)速率為 10 Hz 的脈沖信號(hào)比另一個(gè)具有相同峰值幅度但脈沖重復(fù)速率為 1 kHz 的信號(hào)準(zhǔn)峰值要低。這種信號(hào)加權(quán)是通過(guò)帶有特定充放電結(jié)構(gòu)的電路和由 CISPR 定義的顯示時(shí)間常量來(lái)實(shí)現(xiàn)。
CISPR,國(guó)際無(wú)線電干擾特別委員會(huì),由一些國(guó)際組織建立于 1934 年,致力于解決無(wú)線電干擾。它是由國(guó)際電工委員會(huì)(IEC)和許多其他國(guó)際組織的委員所組成的一個(gè)非政府組織,其所推薦的標(biāo)準(zhǔn)通常成為世界各地的政府監(jiān)管機(jī)構(gòu)所采用的法定 EMC 測(cè)試要求的基礎(chǔ)。
QPD 也是定量測(cè)量信號(hào)“干擾因子”的一種方法。設(shè)想我們正在收聽(tīng)某一遭受干擾的無(wú)線電臺(tái),如果只是每隔幾秒偶而聽(tīng)見(jiàn)由噪聲所引起的“嗞嗞”聲,那么基本上還可以正常收聽(tīng)節(jié)目,但是,如果相同幅度的干擾信號(hào)每秒出現(xiàn) 60 次,就無(wú)法再正常收聽(tīng)節(jié)目了。
平滑處理
在頻譜儀中有幾種不同的方法來(lái)平滑包絡(luò)檢波器輸出幅度的變化。第一種方法是前面已經(jīng)討論過(guò)的平均檢波,還有兩種方法:視頻濾波和跡線平均14。下面將對(duì)它們進(jìn)行介紹。
視頻濾波
要識(shí)別靠近噪聲的信號(hào)并不只是 EMC 測(cè)量遇到的問(wèn)題。如圖 2-27 所示,頻譜儀的顯示是被測(cè)信號(hào)加上它自身的內(nèi)部噪聲。為了減小噪聲對(duì)顯示信號(hào)幅度的影響,我們常常對(duì)顯示進(jìn)行平滑或平均,如圖 2-28 所示。頻譜儀所包含的可變視頻濾波器就是用作此目的。它是一個(gè)低通濾波器,位于包絡(luò)檢波器之后,并且決定了視頻信號(hào)的帶寬,該視頻信號(hào)稍后將被數(shù)字化以生成幅度數(shù)據(jù)。此視頻濾波器的截止頻率可以減小到小于已選定的分辨率帶寬(IF)濾波器的帶寬。這時(shí)候,視頻系統(tǒng)將無(wú)法再跟隨經(jīng)過(guò)中頻鏈路的信號(hào)包絡(luò)的快速變化。結(jié)果就是對(duì)被顯示信號(hào)的平均或平滑。
圖 2-27. 頻譜分析儀顯示的信號(hào)加噪聲
圖 2-28. 圖 2-27 中的信號(hào)經(jīng)充分平滑后的顯示
圖 2-29. VBW 與 RBW 比值分別為 3:1、1:10、1:100 時(shí)的平滑效果
這種效果在測(cè)量噪聲時(shí)最為明顯,尤其是選用高分辨率帶寬的時(shí)候。當(dāng)減小視頻帶寬,那么噪聲峰峰值的波動(dòng)變化也隨之減小。如圖 2-29 所示,減小的程度(平均或平滑的程度)隨視頻帶寬和分辨率帶寬的比值而變。當(dāng)比值小于或等于 0.01 時(shí),平滑效果較好,而比值增大時(shí),平滑效果則不太理想。視頻濾波器不會(huì)對(duì)已經(jīng)平滑的信號(hào)跡線(例如顯示的正弦信號(hào)已可以很好地與噪聲區(qū)分)有任何影響。
如果將頻譜儀設(shè)置為正峰值檢波模式,可以注意到以下兩點(diǎn):首先,如果 VBW > RBW,則改變分辨率帶寬對(duì)噪聲的峰峰值起伏影響不大。其次,如果 VBW < RBW,則改變視頻帶寬似乎會(huì)影響噪聲電平。噪聲起伏變化不大是因?yàn)轭l譜儀當(dāng)前只顯示了噪聲的峰值。不過(guò),噪聲電平表現(xiàn)出隨著視頻帶寬而變,這是由于平均(平滑)處理的變化,因而使被平滑的噪聲包絡(luò)的峰值改變,如圖 2-30a。選擇平均檢波模式,平均噪聲電平并不改變,如圖 2-30b。
圖 2-30a. 正峰值檢波模式:減小視頻帶寬使峰值噪聲變小,但不能降低平均噪聲電平
圖 2-30b. 平均檢波模式:無(wú)論 VBW 與 RBW 的
比值為多少(3:1、1:10、1:100),噪聲電平保持不變
由于視頻濾波器有自己的響應(yīng)時(shí)間,因此當(dāng)視頻帶寬 VBW 小于分辨率帶寬 RBW 時(shí),掃描時(shí)間的改變近似與視頻帶寬的變化成反比,掃描時(shí)間(ST)通過(guò)以下公式來(lái)描述:
分析儀根據(jù)視頻帶寬、掃寬和分辨率帶寬,自動(dòng)設(shè)置相應(yīng)的掃描時(shí)間。
跡線平均
數(shù)字顯示提供了另一種平滑顯示的選擇:跡線平均。這是與使用平均檢波器完全不同的處理過(guò)程。它通過(guò)逐點(diǎn)的兩次或多次掃描來(lái)實(shí)現(xiàn)平均,每一個(gè)顯示點(diǎn)的新數(shù)值由當(dāng)前值與前一個(gè)平均值再求平均得到:
因此,經(jīng)過(guò)若干掃描后顯示會(huì)漸漸趨于一個(gè)平均值。通過(guò)設(shè)置發(fā)生平均的掃描次數(shù),可以像視頻濾波那樣選擇平均或平滑的程度。圖 2-31 顯示了不同掃描次數(shù)下獲得的跡線平均效果。盡管跡線平均不影響掃描時(shí)間,但因?yàn)槎啻螔呙栊枰欢ǖ臅r(shí)間,因此要達(dá)得期望的平均效果所用的時(shí)間與采用視頻濾波方式所用的時(shí)間大致相同。
圖 2-31. 掃描次數(shù)分別為 1、5、20、100
(每組掃描對(duì)應(yīng)跡線位置偏移從上到下)時(shí)的跡線平均效果
在大多數(shù)場(chǎng)合里無(wú)論選擇哪種顯示平滑方式都一樣。如果被測(cè)信號(hào)是噪聲或非常接近噪聲的低電平正弦信號(hào),則不管使用視頻濾波還是跡線平均都會(huì)得到相同的效果。
不過(guò),兩者之間仍有一個(gè)明顯的區(qū)別。視頻濾波是對(duì)信號(hào)實(shí)時(shí)地進(jìn)行平均,即隨著掃描的進(jìn)行我們看到的是屏幕上每個(gè)顯示點(diǎn)的充分平均或平滑效果。每個(gè)點(diǎn)只做一次平均處理,在每次掃描上的處理時(shí)間約為 1/VBW。而跡線平均需要進(jìn)行多次掃描來(lái)實(shí)現(xiàn)顯示信號(hào)的充分平均,且每個(gè)點(diǎn)上的平均處理發(fā)生在多次掃描所需的整個(gè)時(shí)間周期內(nèi)。
所以對(duì)于某些信號(hào)來(lái)說(shuō),采用不同的平滑方式會(huì)得到截然不同的效果。比如對(duì)一個(gè)頻譜隨時(shí)間變化的信號(hào)采用視頻平均時(shí),每次掃描都會(huì)得到不同的平均結(jié)果。但是如果選擇跡線平均,所得到的結(jié)果將更接近于真實(shí)的平均值,見(jiàn)圖 2-32a 和 2-32b。
圖 2-32a 和 2-32b 顯示對(duì)調(diào)頻廣播信號(hào)分別應(yīng)用視頻濾波和跡線平均,所產(chǎn)生的不同效果。
圖 2-32a. 視頻濾波
圖 2-32b. 跡線平均
時(shí)間選通
具有時(shí)間選通功能的頻譜分析儀可以獲得頻域上占據(jù)相同部分而時(shí)域上彼此分離的信號(hào)的頻譜信息。通過(guò)利用外部觸發(fā)信號(hào)調(diào)整這些信號(hào)間的間隔,可以實(shí)現(xiàn)如下功能:
– 測(cè)量在時(shí)域上彼此分離的多個(gè)信號(hào)中的任意一個(gè)(例如,您可以分離出兩個(gè)時(shí)分而頻率相同的無(wú)線信號(hào)的頻譜)
– 測(cè)量 TDMA 系統(tǒng)中某個(gè)時(shí)隙的信號(hào)頻譜
– 排除干擾信號(hào)的頻譜,比如去除只存在于一段時(shí)間的周期性脈沖邊緣的瞬態(tài)過(guò)程
為什么需要時(shí)間選通
傳統(tǒng)的頻域頻譜分析儀在分析某些信號(hào)時(shí)只能提供有限的信息。這些較難分析的信號(hào)類(lèi)型包括:
– 射頻脈沖
– 時(shí)間復(fù)用
– 時(shí)分多址(TDMA)
– 頻譜交織或非連續(xù)
– 脈沖調(diào)制
有些情況,時(shí)間選通功能可以幫助您完成一些往常即便有可能進(jìn)行但也非常困難的測(cè)量。
測(cè)量時(shí)分雙工信號(hào)
如何使用時(shí)間選通功能執(zhí)行復(fù)雜的測(cè)量,請(qǐng)見(jiàn)圖 2-33a。圖中顯示了一個(gè)簡(jiǎn)化的數(shù)字移動(dòng)信號(hào),其中包含無(wú)線信號(hào) #1 和 #2,它們占據(jù)同一頻道而時(shí)間分用。每路信號(hào)發(fā)送一個(gè) 1 ms 的脈沖,然后關(guān)閉,而后另一路信號(hào)再發(fā)送 1 ms。問(wèn)題的關(guān)鍵是如何測(cè)量每個(gè)發(fā)射信號(hào)單獨(dú)的頻譜。
圖 2-33a. 在時(shí)域里簡(jiǎn)化的數(shù)字移動(dòng)無(wú)線信號(hào)
令人遺憾的是,傳統(tǒng)的頻譜分析儀并不能實(shí)現(xiàn)這一點(diǎn)。它只能顯示兩個(gè)信號(hào)的混合頻譜,如圖 2-33b 所示。而現(xiàn)代分析儀利用時(shí)間選通功能以及一個(gè)外部觸發(fā)信號(hào),就能夠觀察到單獨(dú)的無(wú)線信號(hào) #1(或 #2)的頻譜并確定其是否存在所顯示的雜散信號(hào),如圖2-33c。
調(diào)整這些參數(shù)可以讓您觀察到所需的某個(gè)時(shí)間段的信號(hào)頻譜。如果剛好在感興趣的時(shí)間段里僅有一個(gè)選通信號(hào),那么就可以使用如圖 2-34 所示的電平選通信號(hào)。但是在許多情況下,選通信號(hào)的時(shí)間不會(huì)與我們要測(cè)量的頻譜完全吻合。所以更靈活的方法是結(jié)合指定的選通時(shí)延和選通脈沖寬度采用邊緣觸發(fā)模式來(lái)精確定義想測(cè)量信號(hào)的時(shí)間周期。
圖 2-34. 電平觸發(fā):頻譜分析儀只在選通觸發(fā)信號(hào)高于某個(gè)確定的電平時(shí)才測(cè)量頻譜
圖 2-35. 采用 8 個(gè)時(shí)隙的 TDMA 信號(hào)(本例為 GSM 信號(hào)),時(shí)隙 0 為“關(guān)閉”。
考慮如圖 2-35 所示的 8 個(gè)時(shí)隙的 GSM 信號(hào)。每個(gè)突發(fā)脈沖序列的長(zhǎng)度為 0.577 ms,整個(gè)幀長(zhǎng) 4.615 ms。我們可能只對(duì)某個(gè)指定時(shí)隙內(nèi)的信號(hào)頻譜感興趣。本例中假設(shè) 8 個(gè)可用時(shí)隙中使用了兩個(gè)(時(shí)隙 1 和 3),如圖 2-36。
當(dāng)在頻域中觀察此信號(hào)時(shí),見(jiàn)圖 2-37,我們觀察到頻譜中存在多余的雜散信號(hào)。為了解決這個(gè)問(wèn)題并找到干擾信號(hào)的來(lái)源,我們需要確定它出現(xiàn)在哪一個(gè)時(shí)隙里。如果要觀察時(shí)隙 3,我們可以將選通的觸發(fā)設(shè)置在時(shí)隙 3 中的突發(fā)脈沖序列的上升沿并指定選通時(shí)延為 1.4577 ms、選通脈沖寬度為461.60 μs,如圖 2-38 所示。選通時(shí)延確保了在整個(gè)突發(fā)脈沖序列持續(xù)期間我們只測(cè)量時(shí)隙 3 信號(hào)的頻譜。注意一定要謹(jǐn)慎地選擇選通開(kāi)始和停止值,以避開(kāi)突發(fā)脈沖序列的上升沿和下降沿,因?yàn)樾枰跍y(cè)量前留出一些時(shí)間等待 RBW 濾波信號(hào)穩(wěn)定下來(lái)。圖 2-39. 顯示了時(shí)隙 3 的頻譜,表明雜散信號(hào)并不是由此突發(fā)脈沖引起的。
實(shí)現(xiàn)時(shí)間選通的三種常見(jiàn)方法
– FFT 選通
– 本振選通
– 視頻選通
圖 2-36. 只有時(shí)隙 1 和 3“開(kāi)啟”的 GSM 信號(hào)在零掃寬(時(shí)域)時(shí)的顯示。
圖 2-37. 兩個(gè)時(shí)隙“開(kāi)啟”的 GSM 信號(hào)的頻域顯示,頻譜中出現(xiàn)多余的雜散信號(hào)。
圖 2-38. 使用時(shí)間選通觀察 GSM 信號(hào)時(shí)隙 3 的頻譜。
圖 2-39. 時(shí)隙3 的頻譜表明雜散信號(hào)不是由此突發(fā)脈沖導(dǎo)致的。
選通 FFT
Keysight X 系列信號(hào)分析儀具有內(nèi)置的 FFT 功能。在此模式下,觸發(fā)啟用后經(jīng)過(guò)所選時(shí)延,頻譜儀開(kāi)始捕獲數(shù)據(jù)并進(jìn)行 FFT 處理。中頻信號(hào)經(jīng)數(shù)字化后在 1.83/RBW 的時(shí)間周期內(nèi)被采集。基于這個(gè)數(shù)據(jù)采集計(jì)算 FFT,得到信號(hào)的頻譜。因此,該頻譜存在于已知時(shí)間段的某個(gè)特定時(shí)間。當(dāng)頻譜儀掃寬比 FFT 最大寬度窄時(shí),這是速度最快的選通技術(shù)。
為了獲得盡可能大的頻率分辨率,應(yīng)選擇頻譜儀可用的最小的 RBW(它的捕獲時(shí)間與待測(cè)時(shí)間周期相適應(yīng))。但實(shí)際中并非總需如此,您可以選擇一個(gè)較寬的 RBW 同時(shí)相應(yīng)地減小選通脈沖寬度。在 FFT選通應(yīng)用中最小可用的 RBW 通常比其他選通技術(shù)的最小可用 RBW 更窄,因?yàn)樵谄渌夹g(shù)里中頻必須在脈沖持續(xù)期內(nèi)充分穩(wěn)定,這需要比 1.83/RBW 更長(zhǎng)的時(shí)間。
本振選通
本振選通有時(shí)也稱(chēng)為掃描選通,是另一項(xiàng)時(shí)間選通技術(shù)。在本振選通模式下,我們通過(guò)控制由掃描發(fā)生器產(chǎn)生的斜波電壓來(lái)掃描本振,如圖 2-40 所示。像所有頻譜儀一樣,當(dāng)選通信號(hào)開(kāi)啟時(shí),本振信號(hào)在頻率上爬升。當(dāng)選通關(guān)閉后,掃描發(fā)生器的輸出電壓固定,本振在頻率上停止上升。由于這種技術(shù)可以在每個(gè)突發(fā)脈沖信號(hào)持續(xù)期間內(nèi)對(duì)多個(gè)信號(hào)收集單元進(jìn)行測(cè)量,因此它的速度比視頻選通快很多。我們同樣以前面提到的 GSM 信號(hào)為例。
圖 2-40. 在本振選通模式下,本振只在選通間隔內(nèi)掃描
本振選通
本振選通有時(shí)也稱(chēng)為掃描選通,是另一項(xiàng)時(shí)間選通技術(shù)。在本振選通模式下,我們通過(guò)控制由掃描發(fā)生器產(chǎn)生的斜波電壓來(lái)掃描本振,如圖 2-40 所示。像所有頻譜儀一樣,當(dāng)選通信號(hào)開(kāi)啟時(shí),本振信號(hào)在頻率上爬升。當(dāng)選通關(guān)閉后,掃描發(fā)生器的輸出電壓固定,本振在頻率上停止上升。由于這種技術(shù)可以在每個(gè)突發(fā)脈沖信號(hào)持續(xù)期間內(nèi)對(duì)多個(gè)信號(hào)收集單元進(jìn)行測(cè)量,因此它的速度比視頻選通快很多。我們同樣以前面提到的 GSM 信號(hào)為例。
用標(biāo)準(zhǔn)非選通模式的 X 系列信號(hào)分析儀掃過(guò) 1 MHz 掃寬需要 14.6 ms,如圖 2-41 所示。如果選通脈沖寬度為 0.3 ms,頻譜儀必須在 49(14.6 除以 0.3)個(gè)選通信號(hào)間隔時(shí)間內(nèi)掃描;如果 GSM 信號(hào)的完整幀長(zhǎng)為 4.615 ms,那么總的測(cè)量時(shí)間就等于 49 個(gè)選通信號(hào)間隔乘以 4.615 ms 等于 226 ms。這與后面所說(shuō)的視頻選通技術(shù)相比在速度上有了很大的提高。X 系列信號(hào)分析儀和 PSA 系列頻譜分析儀均具有本振選通功能。
圖 2-41. GSM 信號(hào)頻譜
視頻選通
一些頻譜儀(包括 Keysight 8560、8590 和E S A 系列)采用了視頻選通的信號(hào)分析技術(shù)。這種情況下,當(dāng)選通信號(hào)處于截止?fàn)顟B(tài)時(shí)視頻電壓被關(guān)閉或?yàn)椤柏?fù)無(wú)窮大”。檢波器設(shè)置為峰值檢波,掃描時(shí)間的設(shè)置必須保證選通信號(hào)在每個(gè)顯示點(diǎn)或信號(hào)收集單元內(nèi)至少出現(xiàn)一次,從而確保峰值檢波器能夠獲得相應(yīng)時(shí)間間隔內(nèi)的真實(shí)數(shù)據(jù),否則會(huì)出現(xiàn)沒(méi)有數(shù)據(jù)值的跡線點(diǎn),進(jìn)而導(dǎo)致不完整的顯示頻譜。因此,最小掃描時(shí)間 = 顯示點(diǎn)數(shù) N x 突發(fā)脈沖的時(shí)間周期。例如,在 GSM 測(cè)量中,完整幀長(zhǎng)為 4.615 ms,假設(shè) ESA 頻譜儀設(shè)置為缺省顯示點(diǎn)數(shù) 401,那么對(duì)于 GSM 視頻選通測(cè)量的最小掃描時(shí)間是 401 x 4.615 ms = 1.85 s。
有些 TDMA 格式的周期時(shí)間長(zhǎng)達(dá) 90 ms,導(dǎo)致如果使用視頻選通技術(shù)需要很長(zhǎng)的掃描時(shí)間。現(xiàn)在,您已經(jīng)知道典型的模擬頻譜分析儀的工作原理,以及部分重要功能特性的使用方法,接下來(lái)要討論的是當(dāng)使用數(shù)字技術(shù)替代某些模擬電路時(shí),對(duì)頻譜分析儀的性能有何改善。
圖 2-42. 具有視頻選通的頻譜分析儀的結(jié)構(gòu)框圖
-? END? -
本文來(lái)源于網(wǎng)絡(luò)
如有侵權(quán) 請(qǐng)聯(lián)系后臺(tái)刪除
圖 2-18. 1001 個(gè)跡線點(diǎn)(信號(hào)收集單元)中的
每個(gè)點(diǎn)都覆蓋了 100 kHz 的頻率掃寬和 0.01 ms 的時(shí)間掃寬
頻率:信號(hào)收集單元的寬度 = 掃寬/(跡線點(diǎn)數(shù) – 1)
時(shí)間:信號(hào)收集單元的寬度 = 掃描時(shí)間/(跡線點(diǎn)數(shù) – 1)
不同儀器的采樣速率不同,但減小掃寬和/或增加掃描時(shí)間能夠獲得更高的精度,因?yàn)槿魏我环N情況都會(huì)增加信號(hào)收集單元所含的樣本數(shù)。采用數(shù)字中頻濾波器的分析儀,采樣速率和內(nèi)插特性按照等效于連續(xù)時(shí)間處理來(lái)設(shè)計(jì)。
“信號(hào)收集單元”的概念很重要,它能夠幫我們區(qū)分這 6 種顯示檢波器類(lèi)型:
– 取樣檢波
– 正峰值檢波(簡(jiǎn)稱(chēng)峰值檢波)
– 負(fù)峰值檢波
– 正態(tài)檢波(Normal)
– 平均檢波
– 準(zhǔn)峰值檢波
圖 2-19. 存儲(chǔ)器中存入的跡線點(diǎn)基于不同的檢波器算法
前三種檢波類(lèi)型(取樣、峰值和負(fù)峰值)比較容易理解,如圖 2-19 中的直觀表示。正態(tài)、平均和準(zhǔn)峰值檢波要復(fù)雜一些,我們稍后進(jìn)行討論。
我們回到之前的問(wèn)題:如何用數(shù)字技術(shù)盡可能如實(shí)地顯示模擬系統(tǒng)?我們來(lái)設(shè)想圖 2-17 所描述的情況,即顯示的信號(hào)只包含噪聲和一個(gè)連續(xù)波(CW)信號(hào)。
取樣檢波
作為第一種方法,我們只選取每個(gè)信號(hào)收集單元的中間位置的瞬時(shí)電平值(如圖 2-19)作為數(shù)據(jù)點(diǎn),這就是取樣檢波模式。為使顯示跡線看起來(lái)是連續(xù)的,我們?cè)O(shè)計(jì)了一種能描繪出各點(diǎn)之間矢量關(guān)系的系統(tǒng)。比較圖 2-17 和 2-20,可以看出我們獲得了一個(gè)還算合理的顯示。當(dāng)然,跡線上的點(diǎn)數(shù)越多,就越能真實(shí)地再現(xiàn)模擬信號(hào)。不同頻譜儀的可用顯示點(diǎn)數(shù)是不一樣的,對(duì)于 X 系列信號(hào)分析儀,頻域跡線的取樣顯示點(diǎn)數(shù)可以從最少 1 個(gè)點(diǎn)到最多 40001 個(gè)點(diǎn)。如圖 2-21 所示,增加取樣點(diǎn)確實(shí)可使結(jié)果更接近于模擬信號(hào)。
雖然這種取樣檢波方式能很好的體現(xiàn)噪聲的隨機(jī)性,但并不適合于分析正弦波。如果在高性能 X 系列信號(hào)分析儀上觀察一個(gè) 100 MHz 的梳狀信號(hào),分析儀的掃寬可以被設(shè)置為 0 至 26.5 GHz即便使用 1001 個(gè)顯示點(diǎn),每個(gè)顯示點(diǎn)代表 26.5 MHz 的頻率掃寬(信號(hào)收集單元),也遠(yuǎn)大于 8 MHz 的最大分辨率帶寬。
結(jié)果,采用取樣檢波模式時(shí),只有當(dāng)梳狀信號(hào)的混頻分量剛好處在中頻的中心處時(shí),它的幅度才能被顯示出來(lái)。圖 2-22a 是一個(gè)使用取樣檢波的帶寬為 750 Hz、掃寬為 10 MHz 的顯示。它的梳狀信號(hào)幅度應(yīng)該與圖 2-22b 所示(使用峰值檢波)的實(shí)際信號(hào)基本一致。可以得出,取樣檢波方式并不適用于所有信號(hào),也不能反映顯示信號(hào)的真實(shí)峰值。當(dāng)分辨率帶寬小于采樣間隔(如信號(hào)收集單元的寬度)時(shí),取樣檢波模式會(huì)給出錯(cuò)誤的結(jié)果。
圖 2-22a. 取樣檢波模式下的帶寬為 250 kHz、掃寬為 10 MHz 的梳狀信號(hào)
圖 2-22b. 在 10 MHz 掃寬內(nèi),采用(正)峰值檢波得到的實(shí)際梳狀信號(hào)
(正)峰值檢波
確保所有正弦波的真實(shí)幅度都能被記錄的一種方法是顯示每個(gè)信號(hào)收集單元內(nèi)出現(xiàn)的最大值,這就是正峰值檢波方式,或者叫峰值檢波,如圖 2-22b 所示。峰值檢波是許多頻譜分析儀默認(rèn)的檢波方式,因?yàn)闊o(wú)論分辨率帶寬和信號(hào)收集單元的寬度之間的關(guān)系如何,它都能保證不丟失任何正弦信號(hào)。不過(guò),與取樣檢波方式不同的是,由于峰值檢波只顯示每個(gè)信號(hào)收集單元內(nèi)的最大值而忽略了實(shí)際的噪聲隨機(jī)性,所以在反映隨機(jī)噪聲方面并不理想。因此,將峰值檢波作為第一檢波方式的頻譜儀一般還提供取樣檢波作為補(bǔ)充。
負(fù)峰值檢波
負(fù)峰值檢波方式顯示的是每個(gè)信號(hào)收集單元中的最小值。大多數(shù)頻譜儀都提供這種檢波方式,盡管它不像其他方式那么常用。對(duì)于 EMC 測(cè)量,想要從脈沖信號(hào)中區(qū)分出 CW 信號(hào),負(fù)峰值檢波會(huì)很有用。在本應(yīng)用指南后面的內(nèi)容里,我們將看到負(fù)峰值檢波還能應(yīng)用于使用外部混頻器進(jìn)行高頻測(cè)量時(shí)的信號(hào)識(shí)別。
正態(tài)檢波
為了提供比峰值檢波更好的對(duì)隨機(jī)噪聲的直觀顯示并避免取樣檢波模式顯示信號(hào)的丟失問(wèn)題,許多頻譜儀還提供正態(tài)檢波模式(俗稱(chēng) rosenfell9 模式)。如果信號(hào)像用正峰值和負(fù)峰值檢波所確定的那樣既有上升、又有下降,則該算法將這種信號(hào)歸類(lèi)為噪聲信號(hào)。
Roesnfell 并不是人名,而是一種運(yùn)算方法的描述,用以測(cè)試在給定數(shù)據(jù)點(diǎn)代表的信號(hào)收集單元內(nèi)的信號(hào)是上升還是下降,有時(shí)也寫(xiě)成 rose’n’fell。
在這種情況下,用奇數(shù)號(hào)的數(shù)據(jù)點(diǎn)來(lái)顯示信號(hào)收集單元中的最大值,用偶數(shù)號(hào)的數(shù)據(jù)點(diǎn)來(lái)顯示最小值。如圖 2-25 所示。正態(tài)檢波模式和取樣檢波模式在圖 2-23a 和 2-13b中比較。(由于取樣檢波器在測(cè)量噪聲時(shí)非常有效,所以它常被用于噪聲游標(biāo)應(yīng)用。同樣在信道功率測(cè)量和鄰道功率測(cè)量中需要一種檢波類(lèi)型,可以提供無(wú)任何傾 向 的結(jié)果,此時(shí)適合使用峰值檢波。對(duì)沒(méi)有平均檢波功能的頻譜儀來(lái)說(shuō),取樣檢波是最好的選擇。)
當(dāng)遇到正弦信號(hào)時(shí)會(huì)是什么情況呢?我們知道,當(dāng)混頻分量經(jīng)過(guò)中頻濾波器時(shí),頻譜儀的顯示器上會(huì)描繪出濾波器的特性曲線。如果濾波器的曲線覆蓋了許多個(gè)顯示點(diǎn),便會(huì)出現(xiàn)下述情況:顯示信號(hào)只在混頻分量接近濾波器的中心頻率時(shí)才上升,也只在混頻分量遠(yuǎn)離濾波器中心頻率時(shí)才下降。無(wú)論哪一種情況,正峰值和負(fù)峰值檢波都能檢測(cè)出單一方向上的幅度變化,并根據(jù)正態(tài)檢波算法,顯示每個(gè)信號(hào)收集單元內(nèi)的最大值,如圖 2-24 所示。
當(dāng)分辨率帶寬比信號(hào)收集單元窄時(shí)又會(huì)怎樣呢?這時(shí)信號(hào)在信號(hào)收集單元內(nèi)既有上升又有下降。如果信號(hào)收集單元恰好是奇數(shù)號(hào),則一切正常,信號(hào)收集單元內(nèi)的最大值將作為下一個(gè)數(shù)據(jù)點(diǎn)直接被繪出。但是,如果信號(hào)收集單元是偶數(shù)號(hào)的,那么描繪出的將是信號(hào)收集單元內(nèi)的最小值。根據(jù)分辨率帶寬和信號(hào)收集單元寬度的比值,最小值可能部分或完全不同于真實(shí)峰值(我們希望顯示的值)。在信號(hào)收集單元寬度遠(yuǎn)大于分辨率帶寬的極端情況下,信號(hào)收集單元內(nèi)的最大值和最小值之差將是信號(hào)峰值和噪聲之間的差值,圖 2-25 的示例正是如此。觀察第 6 個(gè)信號(hào)收集單元,當(dāng)前信號(hào)收集單元中的峰值總是與前一個(gè)信號(hào)收集單元中的峰值相比較,當(dāng)信號(hào)單元為奇數(shù)號(hào)時(shí)(如第 7 個(gè)單元)就顯示兩者中的較大值。此峰值實(shí)際上發(fā)生在第6 個(gè)信號(hào)收集單元,但在第 7 個(gè)單元才被顯示出來(lái)。
圖 2-24. 當(dāng)信號(hào)收集單元內(nèi)的值只增大或只減小時(shí),正態(tài)檢波顯示該單元內(nèi)的最大值
正態(tài)檢波算法
?
如果信號(hào)值在一個(gè)信號(hào)收集單元內(nèi)既有上升又有下降:則偶數(shù)號(hào)信號(hào)收集單元將顯示該單元內(nèi)的最小值(負(fù)峰值)。并記錄最大值,然后在奇數(shù)號(hào)信號(hào)收集單元中將當(dāng)前單元內(nèi)的峰值與之前(記錄的)一個(gè)單元的峰值進(jìn)行比較并顯示兩者中的較大值(正峰值)。如果信號(hào)在一個(gè)信號(hào)收集單元內(nèi)只上升或者只減小,則顯示峰值,如圖 2-25所示。
這個(gè)處理過(guò)程可能引起數(shù)據(jù)點(diǎn)的最大值顯示過(guò)于偏向右方,但此偏移量通常只占掃寬的一個(gè)很小的百分?jǐn)?shù)。一些頻譜分析儀,例如高性能 X 系列信號(hào)分析儀,通過(guò)調(diào)節(jié)本振的起止頻率來(lái)補(bǔ)償這種潛在的影響。
另一種錯(cuò)誤是顯示峰值有兩個(gè)而實(shí)際峰值只存在一個(gè),圖 2-26 顯示出可能發(fā)生這種情況的例子。使用較寬分辨率帶寬并采用峰值檢波時(shí)兩個(gè)峰值輪廓被顯示出來(lái)。
因此峰值檢波最適用于從噪聲中定位 CW 信號(hào),取樣檢波最適用于測(cè)量噪聲,而既要觀察信號(hào)又要觀察噪聲時(shí)采用正態(tài)檢波最為合適。
圖 2-25. 正態(tài)檢波算法所選擇的顯示跡線點(diǎn)
圖 2-26. 正態(tài)檢波顯示出兩個(gè)峰值而實(shí)際只存在一個(gè)
平均檢波
雖然現(xiàn)代數(shù)字調(diào)制方案具有類(lèi)噪聲特性,但取樣檢波不能提供我們所需的所有信息。比如在測(cè)量一個(gè) W-CDMA 信號(hào)的信道功率時(shí),我們需要集成信號(hào)的均方根值,這個(gè)測(cè)量過(guò)程涉及到頻譜儀一定頻率范圍內(nèi)的信號(hào)收集單元的總功率,取樣檢波并不能提供這個(gè)信息。
雖然一般頻譜儀是在每個(gè)信號(hào)收集單元內(nèi)多次收集幅度數(shù)據(jù),但取樣檢波只保留這些數(shù)據(jù)中的一個(gè)值而忽略其他值。而平均檢波會(huì)使用該時(shí)間(和頻率)間隔內(nèi)的該信號(hào)收集單元內(nèi)所有數(shù)據(jù),一旦數(shù)據(jù)被數(shù)字化并且我們知道其實(shí)現(xiàn)的環(huán)境,便可以將數(shù)據(jù)以多種方法處理從而獲得想要的結(jié)果。
某些頻譜儀將功率(基于電壓的均方根值)取平均的檢波稱(chēng)為 rms(均方根) 檢波。Keysight X 系列信號(hào)分析儀的平均檢波功能包括功率平均、電壓平均和信號(hào)的對(duì)數(shù)平均,不同的平均類(lèi)型可以通過(guò)按鍵單獨(dú)選擇:
功率(rms)平均是對(duì)信號(hào)的均方根電平取平均值,這是將一個(gè)信號(hào)收集單元內(nèi)所測(cè)得的電壓值取平方和再開(kāi)方然后除以頻譜儀輸入特性阻抗(通常為 50 Ω)而得到。功率平均計(jì)算出真實(shí)的平均功率,最適用于測(cè)量復(fù)雜信號(hào)的功率。
電壓平均是將一個(gè)信號(hào)收集單元內(nèi)測(cè)得的信號(hào)包絡(luò)的線性電壓值取平均。在 EMI 測(cè)試中通常用這種方法來(lái)測(cè)量窄帶信號(hào)(這部分內(nèi)容將在下一節(jié)做進(jìn)一步討論)。電壓平均還可以用來(lái)觀察 AM 信號(hào)或脈沖調(diào)制信號(hào)(如雷達(dá)信號(hào)、TDMA 發(fā)射信號(hào))的上升和下降情況。
對(duì)數(shù)功率(視頻)平均是將一個(gè)信號(hào)收集單元內(nèi)所測(cè)得的信號(hào)包絡(luò)的對(duì)數(shù)幅度值(單位為 dB)取平均。它最適合用來(lái)觀察正弦信號(hào),特別是那些靠近噪聲的信號(hào)。11
因此,使用功率為平均類(lèi)型的平均檢波方式提供的是基于 rms 電壓值的真實(shí)平均功率,而平均類(lèi)型為電壓的檢波器則可以看作是通用的平均檢波器。平均類(lèi)型為對(duì)數(shù)的檢波器沒(méi)有其他等效方式。
采用平均檢波測(cè)量功率較取樣檢波有所改進(jìn)。取樣檢波需要進(jìn)行多次掃描以獲取足夠的數(shù)據(jù)點(diǎn)來(lái)提供精確的平均功率信息。平均檢波使得對(duì)信道功率的測(cè)量從某范圍內(nèi)信號(hào)收集單元的求和變成代表著頻譜儀某段頻率的時(shí)間間隔的合成。在快速傅立葉變換(FFT)頻譜儀12中,用于測(cè)量信道功率的值由顯示數(shù)據(jù)點(diǎn)的和變?yōu)榱?FFT 變換點(diǎn)之和。
在掃頻和FFT兩種模式下,這種合成捕獲所有可用的功率信息,而不像取樣檢波那樣只捕獲取樣點(diǎn)的功率信息。所以當(dāng)測(cè)量時(shí)間相同時(shí),平均檢波的結(jié)果一致性更高。在掃描分析時(shí)也可以簡(jiǎn)單地通過(guò)延長(zhǎng)掃描時(shí)間來(lái)提高測(cè)量結(jié)果的穩(wěn)定性。
EMI 檢波器:平均檢波和準(zhǔn)峰值檢波
平均檢波的一個(gè)重要應(yīng)用是用于檢測(cè)設(shè)備的電磁干擾(EMI)特性。在這種應(yīng)用中,上一節(jié)所述的電壓平均方式可以測(cè)量到可能被寬帶脈沖噪聲所掩蓋的窄帶信號(hào)。在 EMI 測(cè)試儀器中所使用的平均檢波將取出待測(cè)的包絡(luò)并使其通過(guò)一個(gè)帶寬遠(yuǎn)小于 RBW 的低通濾波器,此濾波器對(duì)信號(hào)的高頻分量(如噪聲)做積分(取平均)運(yùn)算。若要在一個(gè)沒(méi)有電壓平均檢波功能的老式頻譜分析儀中實(shí)現(xiàn)這種檢波類(lèi)型,需將頻譜儀設(shè)置為線性模式并選擇一個(gè)視頻濾波器,它的截止頻率需小于被測(cè)信號(hào)的最小 PRF(脈沖重復(fù)頻率)。
準(zhǔn)峰值檢波(QPD)同樣也用于 EMI 測(cè)試中。QPD 是峰值檢波的一種加權(quán)形式,它的測(cè)量值隨被測(cè)信號(hào)重復(fù)速率的下降而減小。也就是,一個(gè)給定峰值幅度并且脈沖重復(fù)速率為 10 Hz 的脈沖信號(hào)比另一個(gè)具有相同峰值幅度但脈沖重復(fù)速率為 1 kHz 的信號(hào)準(zhǔn)峰值要低。這種信號(hào)加權(quán)是通過(guò)帶有特定充放電結(jié)構(gòu)的電路和由 CISPR 定義的顯示時(shí)間常量來(lái)實(shí)現(xiàn)。
CISPR,國(guó)際無(wú)線電干擾特別委員會(huì),由一些國(guó)際組織建立于 1934 年,致力于解決無(wú)線電干擾。它是由國(guó)際電工委員會(huì)(IEC)和許多其他國(guó)際組織的委員所組成的一個(gè)非政府組織,其所推薦的標(biāo)準(zhǔn)通常成為世界各地的政府監(jiān)管機(jī)構(gòu)所采用的法定 EMC 測(cè)試要求的基礎(chǔ)。
QPD 也是定量測(cè)量信號(hào)“干擾因子”的一種方法。設(shè)想我們正在收聽(tīng)某一遭受干擾的無(wú)線電臺(tái),如果只是每隔幾秒偶而聽(tīng)見(jiàn)由噪聲所引起的“嗞嗞”聲,那么基本上還可以正常收聽(tīng)節(jié)目,但是,如果相同幅度的干擾信號(hào)每秒出現(xiàn) 60 次,就無(wú)法再正常收聽(tīng)節(jié)目了。
平滑處理
在頻譜儀中有幾種不同的方法來(lái)平滑包絡(luò)檢波器輸出幅度的變化。第一種方法是前面已經(jīng)討論過(guò)的平均檢波,還有兩種方法:視頻濾波和跡線平均14。下面將對(duì)它們進(jìn)行介紹。
視頻濾波
要識(shí)別靠近噪聲的信號(hào)并不只是 EMC 測(cè)量遇到的問(wèn)題。如圖 2-27 所示,頻譜儀的顯示是被測(cè)信號(hào)加上它自身的內(nèi)部噪聲。為了減小噪聲對(duì)顯示信號(hào)幅度的影響,我們常常對(duì)顯示進(jìn)行平滑或平均,如圖 2-28 所示。頻譜儀所包含的可變視頻濾波器就是用作此目的。它是一個(gè)低通濾波器,位于包絡(luò)檢波器之后,并且決定了視頻信號(hào)的帶寬,該視頻信號(hào)稍后將被數(shù)字化以生成幅度數(shù)據(jù)。此視頻濾波器的截止頻率可以減小到小于已選定的分辨率帶寬(IF)濾波器的帶寬。這時(shí)候,視頻系統(tǒng)將無(wú)法再跟隨經(jīng)過(guò)中頻鏈路的信號(hào)包絡(luò)的快速變化。結(jié)果就是對(duì)被顯示信號(hào)的平均或平滑。
圖 2-27. 頻譜分析儀顯示的信號(hào)加噪聲
圖 2-28. 圖 2-27 中的信號(hào)經(jīng)充分平滑后的顯示
圖 2-29. VBW 與 RBW 比值分別為 3:1、1:10、1:100 時(shí)的平滑效果
這種效果在測(cè)量噪聲時(shí)最為明顯,尤其是選用高分辨率帶寬的時(shí)候。當(dāng)減小視頻帶寬,那么噪聲峰峰值的波動(dòng)變化也隨之減小。如圖 2-29 所示,減小的程度(平均或平滑的程度)隨視頻帶寬和分辨率帶寬的比值而變。當(dāng)比值小于或等于 0.01 時(shí),平滑效果較好,而比值增大時(shí),平滑效果則不太理想。視頻濾波器不會(huì)對(duì)已經(jīng)平滑的信號(hào)跡線(例如顯示的正弦信號(hào)已可以很好地與噪聲區(qū)分)有任何影響。
如果將頻譜儀設(shè)置為正峰值檢波模式,可以注意到以下兩點(diǎn):首先,如果 VBW > RBW,則改變分辨率帶寬對(duì)噪聲的峰峰值起伏影響不大。其次,如果 VBW < RBW,則改變視頻帶寬似乎會(huì)影響噪聲電平。噪聲起伏變化不大是因?yàn)轭l譜儀當(dāng)前只顯示了噪聲的峰值。不過(guò),噪聲電平表現(xiàn)出隨著視頻帶寬而變,這是由于平均(平滑)處理的變化,因而使被平滑的噪聲包絡(luò)的峰值改變,如圖 2-30a。選擇平均檢波模式,平均噪聲電平并不改變,如圖 2-30b。
圖 2-30a. 正峰值檢波模式:減小視頻帶寬使峰值噪聲變小,但不能降低平均噪聲電平
圖 2-30b. 平均檢波模式:無(wú)論 VBW 與 RBW 的
比值為多少(3:1、1:10、1:100),噪聲電平保持不變
由于視頻濾波器有自己的響應(yīng)時(shí)間,因此當(dāng)視頻帶寬 VBW 小于分辨率帶寬 RBW 時(shí),掃描時(shí)間的改變近似與視頻帶寬的變化成反比,掃描時(shí)間(ST)通過(guò)以下公式來(lái)描述:
分析儀根據(jù)視頻帶寬、掃寬和分辨率帶寬,自動(dòng)設(shè)置相應(yīng)的掃描時(shí)間。
跡線平均
數(shù)字顯示提供了另一種平滑顯示的選擇:跡線平均。這是與使用平均檢波器完全不同的處理過(guò)程。它通過(guò)逐點(diǎn)的兩次或多次掃描來(lái)實(shí)現(xiàn)平均,每一個(gè)顯示點(diǎn)的新數(shù)值由當(dāng)前值與前一個(gè)平均值再求平均得到:
因此,經(jīng)過(guò)若干掃描后顯示會(huì)漸漸趨于一個(gè)平均值。通過(guò)設(shè)置發(fā)生平均的掃描次數(shù),可以像視頻濾波那樣選擇平均或平滑的程度。圖 2-31 顯示了不同掃描次數(shù)下獲得的跡線平均效果。盡管跡線平均不影響掃描時(shí)間,但因?yàn)槎啻螔呙栊枰欢ǖ臅r(shí)間,因此要達(dá)得期望的平均效果所用的時(shí)間與采用視頻濾波方式所用的時(shí)間大致相同。
圖 2-31. 掃描次數(shù)分別為 1、5、20、100
(每組掃描對(duì)應(yīng)跡線位置偏移從上到下)時(shí)的跡線平均效果
在大多數(shù)場(chǎng)合里無(wú)論選擇哪種顯示平滑方式都一樣。如果被測(cè)信號(hào)是噪聲或非常接近噪聲的低電平正弦信號(hào),則不管使用視頻濾波還是跡線平均都會(huì)得到相同的效果。
不過(guò),兩者之間仍有一個(gè)明顯的區(qū)別。視頻濾波是對(duì)信號(hào)實(shí)時(shí)地進(jìn)行平均,即隨著掃描的進(jìn)行我們看到的是屏幕上每個(gè)顯示點(diǎn)的充分平均或平滑效果。每個(gè)點(diǎn)只做一次平均處理,在每次掃描上的處理時(shí)間約為 1/VBW。而跡線平均需要進(jìn)行多次掃描來(lái)實(shí)現(xiàn)顯示信號(hào)的充分平均,且每個(gè)點(diǎn)上的平均處理發(fā)生在多次掃描所需的整個(gè)時(shí)間周期內(nèi)。
所以對(duì)于某些信號(hào)來(lái)說(shuō),采用不同的平滑方式會(huì)得到截然不同的效果。比如對(duì)一個(gè)頻譜隨時(shí)間變化的信號(hào)采用視頻平均時(shí),每次掃描都會(huì)得到不同的平均結(jié)果。但是如果選擇跡線平均,所得到的結(jié)果將更接近于真實(shí)的平均值,見(jiàn)圖 2-32a 和 2-32b。
圖 2-32a 和 2-32b 顯示對(duì)調(diào)頻廣播信號(hào)分別應(yīng)用視頻濾波和跡線平均,所產(chǎn)生的不同效果。
圖 2-32a. 視頻濾波
圖 2-32b. 跡線平均
時(shí)間選通
具有時(shí)間選通功能的頻譜分析儀可以獲得頻域上占據(jù)相同部分而時(shí)域上彼此分離的信號(hào)的頻譜信息。通過(guò)利用外部觸發(fā)信號(hào)調(diào)整這些信號(hào)間的間隔,可以實(shí)現(xiàn)如下功能:
– 測(cè)量在時(shí)域上彼此分離的多個(gè)信號(hào)中的任意一個(gè)(例如,您可以分離出兩個(gè)時(shí)分而頻率相同的無(wú)線信號(hào)的頻譜)
– 測(cè)量 TDMA 系統(tǒng)中某個(gè)時(shí)隙的信號(hào)頻譜
– 排除干擾信號(hào)的頻譜,比如去除只存在于一段時(shí)間的周期性脈沖邊緣的瞬態(tài)過(guò)程
為什么需要時(shí)間選通
傳統(tǒng)的頻域頻譜分析儀在分析某些信號(hào)時(shí)只能提供有限的信息。這些較難分析的信號(hào)類(lèi)型包括:
– 射頻脈沖
– 時(shí)間復(fù)用
– 時(shí)分多址(TDMA)
– 頻譜交織或非連續(xù)
– 脈沖調(diào)制
有些情況,時(shí)間選通功能可以幫助您完成一些往常即便有可能進(jìn)行但也非常困難的測(cè)量。
測(cè)量時(shí)分雙工信號(hào)
如何使用時(shí)間選通功能執(zhí)行復(fù)雜的測(cè)量,請(qǐng)見(jiàn)圖 2-33a。圖中顯示了一個(gè)簡(jiǎn)化的數(shù)字移動(dòng)信號(hào),其中包含無(wú)線信號(hào) #1 和 #2,它們占據(jù)同一頻道而時(shí)間分用。每路信號(hào)發(fā)送一個(gè) 1 ms 的脈沖,然后關(guān)閉,而后另一路信號(hào)再發(fā)送 1 ms。問(wèn)題的關(guān)鍵是如何測(cè)量每個(gè)發(fā)射信號(hào)單獨(dú)的頻譜。
圖 2-33a. 在時(shí)域里簡(jiǎn)化的數(shù)字移動(dòng)無(wú)線信號(hào)
令人遺憾的是,傳統(tǒng)的頻譜分析儀并不能實(shí)現(xiàn)這一點(diǎn)。它只能顯示兩個(gè)信號(hào)的混合頻譜,如圖 2-33b 所示。而現(xiàn)代分析儀利用時(shí)間選通功能以及一個(gè)外部觸發(fā)信號(hào),就能夠觀察到單獨(dú)的無(wú)線信號(hào) #1(或 #2)的頻譜并確定其是否存在所顯示的雜散信號(hào),如圖2-33c。
調(diào)整這些參數(shù)可以讓您觀察到所需的某個(gè)時(shí)間段的信號(hào)頻譜。如果剛好在感興趣的時(shí)間段里僅有一個(gè)選通信號(hào),那么就可以使用如圖 2-34 所示的電平選通信號(hào)。但是在許多情況下,選通信號(hào)的時(shí)間不會(huì)與我們要測(cè)量的頻譜完全吻合。所以更靈活的方法是結(jié)合指定的選通時(shí)延和選通脈沖寬度采用邊緣觸發(fā)模式來(lái)精確定義想測(cè)量信號(hào)的時(shí)間周期。
圖 2-34. 電平觸發(fā):頻譜分析儀只在選通觸發(fā)信號(hào)高于某個(gè)確定的電平時(shí)才測(cè)量頻譜
圖 2-35. 采用 8 個(gè)時(shí)隙的 TDMA 信號(hào)(本例為 GSM 信號(hào)),時(shí)隙 0 為“關(guān)閉”。
考慮如圖 2-35 所示的 8 個(gè)時(shí)隙的 GSM 信號(hào)。每個(gè)突發(fā)脈沖序列的長(zhǎng)度為 0.577 ms,整個(gè)幀長(zhǎng) 4.615 ms。我們可能只對(duì)某個(gè)指定時(shí)隙內(nèi)的信號(hào)頻譜感興趣。本例中假設(shè) 8 個(gè)可用時(shí)隙中使用了兩個(gè)(時(shí)隙 1 和 3),如圖 2-36。
當(dāng)在頻域中觀察此信號(hào)時(shí),見(jiàn)圖 2-37,我們觀察到頻譜中存在多余的雜散信號(hào)。為了解決這個(gè)問(wèn)題并找到干擾信號(hào)的來(lái)源,我們需要確定它出現(xiàn)在哪一個(gè)時(shí)隙里。如果要觀察時(shí)隙 3,我們可以將選通的觸發(fā)設(shè)置在時(shí)隙 3 中的突發(fā)脈沖序列的上升沿并指定選通時(shí)延為 1.4577 ms、選通脈沖寬度為461.60 μs,如圖 2-38 所示。選通時(shí)延確保了在整個(gè)突發(fā)脈沖序列持續(xù)期間我們只測(cè)量時(shí)隙 3 信號(hào)的頻譜。注意一定要謹(jǐn)慎地選擇選通開(kāi)始和停止值,以避開(kāi)突發(fā)脈沖序列的上升沿和下降沿,因?yàn)樾枰跍y(cè)量前留出一些時(shí)間等待 RBW 濾波信號(hào)穩(wěn)定下來(lái)。圖 2-39. 顯示了時(shí)隙 3 的頻譜,表明雜散信號(hào)并不是由此突發(fā)脈沖引起的。
實(shí)現(xiàn)時(shí)間選通的三種常見(jiàn)方法
– FFT 選通
– 本振選通
– 視頻選通
圖 2-36. 只有時(shí)隙 1 和 3“開(kāi)啟”的 GSM 信號(hào)在零掃寬(時(shí)域)時(shí)的顯示。
圖 2-37. 兩個(gè)時(shí)隙“開(kāi)啟”的 GSM 信號(hào)的頻域顯示,頻譜中出現(xiàn)多余的雜散信號(hào)。
圖 2-38. 使用時(shí)間選通觀察 GSM 信號(hào)時(shí)隙 3 的頻譜。
圖 2-39. 時(shí)隙3 的頻譜表明雜散信號(hào)不是由此突發(fā)脈沖導(dǎo)致的。
選通 FFT
Keysight X 系列信號(hào)分析儀具有內(nèi)置的 FFT 功能。在此模式下,觸發(fā)啟用后經(jīng)過(guò)所選時(shí)延,頻譜儀開(kāi)始捕獲數(shù)據(jù)并進(jìn)行 FFT 處理。中頻信號(hào)經(jīng)數(shù)字化后在 1.83/RBW 的時(shí)間周期內(nèi)被采集。基于這個(gè)數(shù)據(jù)采集計(jì)算 FFT,得到信號(hào)的頻譜。因此,該頻譜存在于已知時(shí)間段的某個(gè)特定時(shí)間。當(dāng)頻譜儀掃寬比 FFT 最大寬度窄時(shí),這是速度最快的選通技術(shù)。
為了獲得盡可能大的頻率分辨率,應(yīng)選擇頻譜儀可用的最小的 RBW(它的捕獲時(shí)間與待測(cè)時(shí)間周期相適應(yīng))。但實(shí)際中并非總需如此,您可以選擇一個(gè)較寬的 RBW 同時(shí)相應(yīng)地減小選通脈沖寬度。在 FFT選通應(yīng)用中最小可用的 RBW 通常比其他選通技術(shù)的最小可用 RBW 更窄,因?yàn)樵谄渌夹g(shù)里中頻必須在脈沖持續(xù)期內(nèi)充分穩(wěn)定,這需要比 1.83/RBW 更長(zhǎng)的時(shí)間。
本振選通
本振選通有時(shí)也稱(chēng)為掃描選通,是另一項(xiàng)時(shí)間選通技術(shù)。在本振選通模式下,我們通過(guò)控制由掃描發(fā)生器產(chǎn)生的斜波電壓來(lái)掃描本振,如圖 2-40 所示。像所有頻譜儀一樣,當(dāng)選通信號(hào)開(kāi)啟時(shí),本振信號(hào)在頻率上爬升。當(dāng)選通關(guān)閉后,掃描發(fā)生器的輸出電壓固定,本振在頻率上停止上升。由于這種技術(shù)可以在每個(gè)突發(fā)脈沖信號(hào)持續(xù)期間內(nèi)對(duì)多個(gè)信號(hào)收集單元進(jìn)行測(cè)量,因此它的速度比視頻選通快很多。我們同樣以前面提到的 GSM 信號(hào)為例。
圖 2-40. 在本振選通模式下,本振只在選通間隔內(nèi)掃描
本振選通
本振選通有時(shí)也稱(chēng)為掃描選通,是另一項(xiàng)時(shí)間選通技術(shù)。在本振選通模式下,我們通過(guò)控制由掃描發(fā)生器產(chǎn)生的斜波電壓來(lái)掃描本振,如圖 2-40 所示。像所有頻譜儀一樣,當(dāng)選通信號(hào)開(kāi)啟時(shí),本振信號(hào)在頻率上爬升。當(dāng)選通關(guān)閉后,掃描發(fā)生器的輸出電壓固定,本振在頻率上停止上升。由于這種技術(shù)可以在每個(gè)突發(fā)脈沖信號(hào)持續(xù)期間內(nèi)對(duì)多個(gè)信號(hào)收集單元進(jìn)行測(cè)量,因此它的速度比視頻選通快很多。我們同樣以前面提到的 GSM 信號(hào)為例。
用標(biāo)準(zhǔn)非選通模式的 X 系列信號(hào)分析儀掃過(guò) 1 MHz 掃寬需要 14.6 ms,如圖 2-41 所示。如果選通脈沖寬度為 0.3 ms,頻譜儀必須在 49(14.6 除以 0.3)個(gè)選通信號(hào)間隔時(shí)間內(nèi)掃描;如果 GSM 信號(hào)的完整幀長(zhǎng)為 4.615 ms,那么總的測(cè)量時(shí)間就等于 49 個(gè)選通信號(hào)間隔乘以 4.615 ms 等于 226 ms。這與后面所說(shuō)的視頻選通技術(shù)相比在速度上有了很大的提高。X 系列信號(hào)分析儀和 PSA 系列頻譜分析儀均具有本振選通功能。
圖 2-41. GSM 信號(hào)頻譜
視頻選通
一些頻譜儀(包括 Keysight 8560、8590 和E S A 系列)采用了視頻選通的信號(hào)分析技術(shù)。這種情況下,當(dāng)選通信號(hào)處于截止?fàn)顟B(tài)時(shí)視頻電壓被關(guān)閉或?yàn)椤柏?fù)無(wú)窮大”。檢波器設(shè)置為峰值檢波,掃描時(shí)間的設(shè)置必須保證選通信號(hào)在每個(gè)顯示點(diǎn)或信號(hào)收集單元內(nèi)至少出現(xiàn)一次,從而確保峰值檢波器能夠獲得相應(yīng)時(shí)間間隔內(nèi)的真實(shí)數(shù)據(jù),否則會(huì)出現(xiàn)沒(méi)有數(shù)據(jù)值的跡線點(diǎn),進(jìn)而導(dǎo)致不完整的顯示頻譜。因此,最小掃描時(shí)間 = 顯示點(diǎn)數(shù) N x 突發(fā)脈沖的時(shí)間周期。例如,在 GSM 測(cè)量中,完整幀長(zhǎng)為 4.615 ms,假設(shè) ESA 頻譜儀設(shè)置為缺省顯示點(diǎn)數(shù) 401,那么對(duì)于 GSM 視頻選通測(cè)量的最小掃描時(shí)間是 401 x 4.615 ms = 1.85 s。
有些 TDMA 格式的周期時(shí)間長(zhǎng)達(dá) 90 ms,導(dǎo)致如果使用視頻選通技術(shù)需要很長(zhǎng)的掃描時(shí)間。現(xiàn)在,您已經(jīng)知道典型的模擬頻譜分析儀的工作原理,以及部分重要功能特性的使用方法,接下來(lái)要討論的是當(dāng)使用數(shù)字技術(shù)替代某些模擬電路時(shí),對(duì)頻譜分析儀的性能有何改善。
圖 2-42. 具有視頻選通的頻譜分析儀的結(jié)構(gòu)框圖
-? END? -
本文來(lái)源于網(wǎng)絡(luò)
如有侵權(quán) 請(qǐng)聯(lián)系后臺(tái)刪除
圖 2-18. 1001 個(gè)跡線點(diǎn)(信號(hào)收集單元)中的
每個(gè)點(diǎn)都覆蓋了 100 kHz 的頻率掃寬和 0.01 ms 的時(shí)間掃寬
頻率:信號(hào)收集單元的寬度 = 掃寬/(跡線點(diǎn)數(shù) – 1)
時(shí)間:信號(hào)收集單元的寬度 = 掃描時(shí)間/(跡線點(diǎn)數(shù) – 1)
不同儀器的采樣速率不同,但減小掃寬和/或增加掃描時(shí)間能夠獲得更高的精度,因?yàn)槿魏我环N情況都會(huì)增加信號(hào)收集單元所含的樣本數(shù)。采用數(shù)字中頻濾波器的分析儀,采樣速率和內(nèi)插特性按照等效于連續(xù)時(shí)間處理來(lái)設(shè)計(jì)。
“信號(hào)收集單元”的概念很重要,它能夠幫我們區(qū)分這 6 種顯示檢波器類(lèi)型:
– 取樣檢波
– 正峰值檢波(簡(jiǎn)稱(chēng)峰值檢波)
– 負(fù)峰值檢波
– 正態(tài)檢波(Normal)
– 平均檢波
– 準(zhǔn)峰值檢波
圖 2-19. 存儲(chǔ)器中存入的跡線點(diǎn)基于不同的檢波器算法
前三種檢波類(lèi)型(取樣、峰值和負(fù)峰值)比較容易理解,如圖 2-19 中的直觀表示。正態(tài)、平均和準(zhǔn)峰值檢波要復(fù)雜一些,我們稍后進(jìn)行討論。
我們回到之前的問(wèn)題:如何用數(shù)字技術(shù)盡可能如實(shí)地顯示模擬系統(tǒng)?我們來(lái)設(shè)想圖 2-17 所描述的情況,即顯示的信號(hào)只包含噪聲和一個(gè)連續(xù)波(CW)信號(hào)。
取樣檢波
作為第一種方法,我們只選取每個(gè)信號(hào)收集單元的中間位置的瞬時(shí)電平值(如圖 2-19)作為數(shù)據(jù)點(diǎn),這就是取樣檢波模式。為使顯示跡線看起來(lái)是連續(xù)的,我們?cè)O(shè)計(jì)了一種能描繪出各點(diǎn)之間矢量關(guān)系的系統(tǒng)。比較圖 2-17 和 2-20,可以看出我們獲得了一個(gè)還算合理的顯示。當(dāng)然,跡線上的點(diǎn)數(shù)越多,就越能真實(shí)地再現(xiàn)模擬信號(hào)。不同頻譜儀的可用顯示點(diǎn)數(shù)是不一樣的,對(duì)于 X 系列信號(hào)分析儀,頻域跡線的取樣顯示點(diǎn)數(shù)可以從最少 1 個(gè)點(diǎn)到最多 40001 個(gè)點(diǎn)。如圖 2-21 所示,增加取樣點(diǎn)確實(shí)可使結(jié)果更接近于模擬信號(hào)。
雖然這種取樣檢波方式能很好的體現(xiàn)噪聲的隨機(jī)性,但并不適合于分析正弦波。如果在高性能 X 系列信號(hào)分析儀上觀察一個(gè) 100 MHz 的梳狀信號(hào),分析儀的掃寬可以被設(shè)置為 0 至 26.5 GHz即便使用 1001 個(gè)顯示點(diǎn),每個(gè)顯示點(diǎn)代表 26.5 MHz 的頻率掃寬(信號(hào)收集單元),也遠(yuǎn)大于 8 MHz 的最大分辨率帶寬。
結(jié)果,采用取樣檢波模式時(shí),只有當(dāng)梳狀信號(hào)的混頻分量剛好處在中頻的中心處時(shí),它的幅度才能被顯示出來(lái)。圖 2-22a 是一個(gè)使用取樣檢波的帶寬為 750 Hz、掃寬為 10 MHz 的顯示。它的梳狀信號(hào)幅度應(yīng)該與圖 2-22b 所示(使用峰值檢波)的實(shí)際信號(hào)基本一致。可以得出,取樣檢波方式并不適用于所有信號(hào),也不能反映顯示信號(hào)的真實(shí)峰值。當(dāng)分辨率帶寬小于采樣間隔(如信號(hào)收集單元的寬度)時(shí),取樣檢波模式會(huì)給出錯(cuò)誤的結(jié)果。
圖 2-22a. 取樣檢波模式下的帶寬為 250 kHz、掃寬為 10 MHz 的梳狀信號(hào)
圖 2-22b. 在 10 MHz 掃寬內(nèi),采用(正)峰值檢波得到的實(shí)際梳狀信號(hào)
(正)峰值檢波
確保所有正弦波的真實(shí)幅度都能被記錄的一種方法是顯示每個(gè)信號(hào)收集單元內(nèi)出現(xiàn)的最大值,這就是正峰值檢波方式,或者叫峰值檢波,如圖 2-22b 所示。峰值檢波是許多頻譜分析儀默認(rèn)的檢波方式,因?yàn)闊o(wú)論分辨率帶寬和信號(hào)收集單元的寬度之間的關(guān)系如何,它都能保證不丟失任何正弦信號(hào)。不過(guò),與取樣檢波方式不同的是,由于峰值檢波只顯示每個(gè)信號(hào)收集單元內(nèi)的最大值而忽略了實(shí)際的噪聲隨機(jī)性,所以在反映隨機(jī)噪聲方面并不理想。因此,將峰值檢波作為第一檢波方式的頻譜儀一般還提供取樣檢波作為補(bǔ)充。
負(fù)峰值檢波
負(fù)峰值檢波方式顯示的是每個(gè)信號(hào)收集單元中的最小值。大多數(shù)頻譜儀都提供這種檢波方式,盡管它不像其他方式那么常用。對(duì)于 EMC 測(cè)量,想要從脈沖信號(hào)中區(qū)分出 CW 信號(hào),負(fù)峰值檢波會(huì)很有用。在本應(yīng)用指南后面的內(nèi)容里,我們將看到負(fù)峰值檢波還能應(yīng)用于使用外部混頻器進(jìn)行高頻測(cè)量時(shí)的信號(hào)識(shí)別。
正態(tài)檢波
為了提供比峰值檢波更好的對(duì)隨機(jī)噪聲的直觀顯示并避免取樣檢波模式顯示信號(hào)的丟失問(wèn)題,許多頻譜儀還提供正態(tài)檢波模式(俗稱(chēng) rosenfell9 模式)。如果信號(hào)像用正峰值和負(fù)峰值檢波所確定的那樣既有上升、又有下降,則該算法將這種信號(hào)歸類(lèi)為噪聲信號(hào)。
Roesnfell 并不是人名,而是一種運(yùn)算方法的描述,用以測(cè)試在給定數(shù)據(jù)點(diǎn)代表的信號(hào)收集單元內(nèi)的信號(hào)是上升還是下降,有時(shí)也寫(xiě)成 rose’n’fell。
在這種情況下,用奇數(shù)號(hào)的數(shù)據(jù)點(diǎn)來(lái)顯示信號(hào)收集單元中的最大值,用偶數(shù)號(hào)的數(shù)據(jù)點(diǎn)來(lái)顯示最小值。如圖 2-25 所示。正態(tài)檢波模式和取樣檢波模式在圖 2-23a 和 2-13b中比較。(由于取樣檢波器在測(cè)量噪聲時(shí)非常有效,所以它常被用于噪聲游標(biāo)應(yīng)用。同樣在信道功率測(cè)量和鄰道功率測(cè)量中需要一種檢波類(lèi)型,可以提供無(wú)任何傾 向 的結(jié)果,此時(shí)適合使用峰值檢波。對(duì)沒(méi)有平均檢波功能的頻譜儀來(lái)說(shuō),取樣檢波是最好的選擇。)
當(dāng)遇到正弦信號(hào)時(shí)會(huì)是什么情況呢?我們知道,當(dāng)混頻分量經(jīng)過(guò)中頻濾波器時(shí),頻譜儀的顯示器上會(huì)描繪出濾波器的特性曲線。如果濾波器的曲線覆蓋了許多個(gè)顯示點(diǎn),便會(huì)出現(xiàn)下述情況:顯示信號(hào)只在混頻分量接近濾波器的中心頻率時(shí)才上升,也只在混頻分量遠(yuǎn)離濾波器中心頻率時(shí)才下降。無(wú)論哪一種情況,正峰值和負(fù)峰值檢波都能檢測(cè)出單一方向上的幅度變化,并根據(jù)正態(tài)檢波算法,顯示每個(gè)信號(hào)收集單元內(nèi)的最大值,如圖 2-24 所示。
當(dāng)分辨率帶寬比信號(hào)收集單元窄時(shí)又會(huì)怎樣呢?這時(shí)信號(hào)在信號(hào)收集單元內(nèi)既有上升又有下降。如果信號(hào)收集單元恰好是奇數(shù)號(hào),則一切正常,信號(hào)收集單元內(nèi)的最大值將作為下一個(gè)數(shù)據(jù)點(diǎn)直接被繪出。但是,如果信號(hào)收集單元是偶數(shù)號(hào)的,那么描繪出的將是信號(hào)收集單元內(nèi)的最小值。根據(jù)分辨率帶寬和信號(hào)收集單元寬度的比值,最小值可能部分或完全不同于真實(shí)峰值(我們希望顯示的值)。在信號(hào)收集單元寬度遠(yuǎn)大于分辨率帶寬的極端情況下,信號(hào)收集單元內(nèi)的最大值和最小值之差將是信號(hào)峰值和噪聲之間的差值,圖 2-25 的示例正是如此。觀察第 6 個(gè)信號(hào)收集單元,當(dāng)前信號(hào)收集單元中的峰值總是與前一個(gè)信號(hào)收集單元中的峰值相比較,當(dāng)信號(hào)單元為奇數(shù)號(hào)時(shí)(如第 7 個(gè)單元)就顯示兩者中的較大值。此峰值實(shí)際上發(fā)生在第6 個(gè)信號(hào)收集單元,但在第 7 個(gè)單元才被顯示出來(lái)。
圖 2-24. 當(dāng)信號(hào)收集單元內(nèi)的值只增大或只減小時(shí),正態(tài)檢波顯示該單元內(nèi)的最大值
正態(tài)檢波算法
?
如果信號(hào)值在一個(gè)信號(hào)收集單元內(nèi)既有上升又有下降:則偶數(shù)號(hào)信號(hào)收集單元將顯示該單元內(nèi)的最小值(負(fù)峰值)。并記錄最大值,然后在奇數(shù)號(hào)信號(hào)收集單元中將當(dāng)前單元內(nèi)的峰值與之前(記錄的)一個(gè)單元的峰值進(jìn)行比較并顯示兩者中的較大值(正峰值)。如果信號(hào)在一個(gè)信號(hào)收集單元內(nèi)只上升或者只減小,則顯示峰值,如圖 2-25所示。
這個(gè)處理過(guò)程可能引起數(shù)據(jù)點(diǎn)的最大值顯示過(guò)于偏向右方,但此偏移量通常只占掃寬的一個(gè)很小的百分?jǐn)?shù)。一些頻譜分析儀,例如高性能 X 系列信號(hào)分析儀,通過(guò)調(diào)節(jié)本振的起止頻率來(lái)補(bǔ)償這種潛在的影響。
另一種錯(cuò)誤是顯示峰值有兩個(gè)而實(shí)際峰值只存在一個(gè),圖 2-26 顯示出可能發(fā)生這種情況的例子。使用較寬分辨率帶寬并采用峰值檢波時(shí)兩個(gè)峰值輪廓被顯示出來(lái)。
因此峰值檢波最適用于從噪聲中定位 CW 信號(hào),取樣檢波最適用于測(cè)量噪聲,而既要觀察信號(hào)又要觀察噪聲時(shí)采用正態(tài)檢波最為合適。
圖 2-25. 正態(tài)檢波算法所選擇的顯示跡線點(diǎn)
圖 2-26. 正態(tài)檢波顯示出兩個(gè)峰值而實(shí)際只存在一個(gè)
平均檢波
雖然現(xiàn)代數(shù)字調(diào)制方案具有類(lèi)噪聲特性,但取樣檢波不能提供我們所需的所有信息。比如在測(cè)量一個(gè) W-CDMA 信號(hào)的信道功率時(shí),我們需要集成信號(hào)的均方根值,這個(gè)測(cè)量過(guò)程涉及到頻譜儀一定頻率范圍內(nèi)的信號(hào)收集單元的總功率,取樣檢波并不能提供這個(gè)信息。
雖然一般頻譜儀是在每個(gè)信號(hào)收集單元內(nèi)多次收集幅度數(shù)據(jù),但取樣檢波只保留這些數(shù)據(jù)中的一個(gè)值而忽略其他值。而平均檢波會(huì)使用該時(shí)間(和頻率)間隔內(nèi)的該信號(hào)收集單元內(nèi)所有數(shù)據(jù),一旦數(shù)據(jù)被數(shù)字化并且我們知道其實(shí)現(xiàn)的環(huán)境,便可以將數(shù)據(jù)以多種方法處理從而獲得想要的結(jié)果。
某些頻譜儀將功率(基于電壓的均方根值)取平均的檢波稱(chēng)為 rms(均方根) 檢波。Keysight X 系列信號(hào)分析儀的平均檢波功能包括功率平均、電壓平均和信號(hào)的對(duì)數(shù)平均,不同的平均類(lèi)型可以通過(guò)按鍵單獨(dú)選擇:
功率(rms)平均是對(duì)信號(hào)的均方根電平取平均值,這是將一個(gè)信號(hào)收集單元內(nèi)所測(cè)得的電壓值取平方和再開(kāi)方然后除以頻譜儀輸入特性阻抗(通常為 50 Ω)而得到。功率平均計(jì)算出真實(shí)的平均功率,最適用于測(cè)量復(fù)雜信號(hào)的功率。
電壓平均是將一個(gè)信號(hào)收集單元內(nèi)測(cè)得的信號(hào)包絡(luò)的線性電壓值取平均。在 EMI 測(cè)試中通常用這種方法來(lái)測(cè)量窄帶信號(hào)(這部分內(nèi)容將在下一節(jié)做進(jìn)一步討論)。電壓平均還可以用來(lái)觀察 AM 信號(hào)或脈沖調(diào)制信號(hào)(如雷達(dá)信號(hào)、TDMA 發(fā)射信號(hào))的上升和下降情況。
對(duì)數(shù)功率(視頻)平均是將一個(gè)信號(hào)收集單元內(nèi)所測(cè)得的信號(hào)包絡(luò)的對(duì)數(shù)幅度值(單位為 dB)取平均。它最適合用來(lái)觀察正弦信號(hào),特別是那些靠近噪聲的信號(hào)。11
因此,使用功率為平均類(lèi)型的平均檢波方式提供的是基于 rms 電壓值的真實(shí)平均功率,而平均類(lèi)型為電壓的檢波器則可以看作是通用的平均檢波器。平均類(lèi)型為對(duì)數(shù)的檢波器沒(méi)有其他等效方式。
采用平均檢波測(cè)量功率較取樣檢波有所改進(jìn)。取樣檢波需要進(jìn)行多次掃描以獲取足夠的數(shù)據(jù)點(diǎn)來(lái)提供精確的平均功率信息。平均檢波使得對(duì)信道功率的測(cè)量從某范圍內(nèi)信號(hào)收集單元的求和變成代表著頻譜儀某段頻率的時(shí)間間隔的合成。在快速傅立葉變換(FFT)頻譜儀12中,用于測(cè)量信道功率的值由顯示數(shù)據(jù)點(diǎn)的和變?yōu)榱?FFT 變換點(diǎn)之和。
在掃頻和FFT兩種模式下,這種合成捕獲所有可用的功率信息,而不像取樣檢波那樣只捕獲取樣點(diǎn)的功率信息。所以當(dāng)測(cè)量時(shí)間相同時(shí),平均檢波的結(jié)果一致性更高。在掃描分析時(shí)也可以簡(jiǎn)單地通過(guò)延長(zhǎng)掃描時(shí)間來(lái)提高測(cè)量結(jié)果的穩(wěn)定性。
EMI 檢波器:平均檢波和準(zhǔn)峰值檢波
平均檢波的一個(gè)重要應(yīng)用是用于檢測(cè)設(shè)備的電磁干擾(EMI)特性。在這種應(yīng)用中,上一節(jié)所述的電壓平均方式可以測(cè)量到可能被寬帶脈沖噪聲所掩蓋的窄帶信號(hào)。在 EMI 測(cè)試儀器中所使用的平均檢波將取出待測(cè)的包絡(luò)并使其通過(guò)一個(gè)帶寬遠(yuǎn)小于 RBW 的低通濾波器,此濾波器對(duì)信號(hào)的高頻分量(如噪聲)做積分(取平均)運(yùn)算。若要在一個(gè)沒(méi)有電壓平均檢波功能的老式頻譜分析儀中實(shí)現(xiàn)這種檢波類(lèi)型,需將頻譜儀設(shè)置為線性模式并選擇一個(gè)視頻濾波器,它的截止頻率需小于被測(cè)信號(hào)的最小 PRF(脈沖重復(fù)頻率)。
準(zhǔn)峰值檢波(QPD)同樣也用于 EMI 測(cè)試中。QPD 是峰值檢波的一種加權(quán)形式,它的測(cè)量值隨被測(cè)信號(hào)重復(fù)速率的下降而減小。也就是,一個(gè)給定峰值幅度并且脈沖重復(fù)速率為 10 Hz 的脈沖信號(hào)比另一個(gè)具有相同峰值幅度但脈沖重復(fù)速率為 1 kHz 的信號(hào)準(zhǔn)峰值要低。這種信號(hào)加權(quán)是通過(guò)帶有特定充放電結(jié)構(gòu)的電路和由 CISPR 定義的顯示時(shí)間常量來(lái)實(shí)現(xiàn)。
CISPR,國(guó)際無(wú)線電干擾特別委員會(huì),由一些國(guó)際組織建立于 1934 年,致力于解決無(wú)線電干擾。它是由國(guó)際電工委員會(huì)(IEC)和許多其他國(guó)際組織的委員所組成的一個(gè)非政府組織,其所推薦的標(biāo)準(zhǔn)通常成為世界各地的政府監(jiān)管機(jī)構(gòu)所采用的法定 EMC 測(cè)試要求的基礎(chǔ)。
QPD 也是定量測(cè)量信號(hào)“干擾因子”的一種方法。設(shè)想我們正在收聽(tīng)某一遭受干擾的無(wú)線電臺(tái),如果只是每隔幾秒偶而聽(tīng)見(jiàn)由噪聲所引起的“嗞嗞”聲,那么基本上還可以正常收聽(tīng)節(jié)目,但是,如果相同幅度的干擾信號(hào)每秒出現(xiàn) 60 次,就無(wú)法再正常收聽(tīng)節(jié)目了。
平滑處理
在頻譜儀中有幾種不同的方法來(lái)平滑包絡(luò)檢波器輸出幅度的變化。第一種方法是前面已經(jīng)討論過(guò)的平均檢波,還有兩種方法:視頻濾波和跡線平均14。下面將對(duì)它們進(jìn)行介紹。
視頻濾波
要識(shí)別靠近噪聲的信號(hào)并不只是 EMC 測(cè)量遇到的問(wèn)題。如圖 2-27 所示,頻譜儀的顯示是被測(cè)信號(hào)加上它自身的內(nèi)部噪聲。為了減小噪聲對(duì)顯示信號(hào)幅度的影響,我們常常對(duì)顯示進(jìn)行平滑或平均,如圖 2-28 所示。頻譜儀所包含的可變視頻濾波器就是用作此目的。它是一個(gè)低通濾波器,位于包絡(luò)檢波器之后,并且決定了視頻信號(hào)的帶寬,該視頻信號(hào)稍后將被數(shù)字化以生成幅度數(shù)據(jù)。此視頻濾波器的截止頻率可以減小到小于已選定的分辨率帶寬(IF)濾波器的帶寬。這時(shí)候,視頻系統(tǒng)將無(wú)法再跟隨經(jīng)過(guò)中頻鏈路的信號(hào)包絡(luò)的快速變化。結(jié)果就是對(duì)被顯示信號(hào)的平均或平滑。
圖 2-27. 頻譜分析儀顯示的信號(hào)加噪聲
圖 2-28. 圖 2-27 中的信號(hào)經(jīng)充分平滑后的顯示
圖 2-29. VBW 與 RBW 比值分別為 3:1、1:10、1:100 時(shí)的平滑效果
這種效果在測(cè)量噪聲時(shí)最為明顯,尤其是選用高分辨率帶寬的時(shí)候。當(dāng)減小視頻帶寬,那么噪聲峰峰值的波動(dòng)變化也隨之減小。如圖 2-29 所示,減小的程度(平均或平滑的程度)隨視頻帶寬和分辨率帶寬的比值而變。當(dāng)比值小于或等于 0.01 時(shí),平滑效果較好,而比值增大時(shí),平滑效果則不太理想。視頻濾波器不會(huì)對(duì)已經(jīng)平滑的信號(hào)跡線(例如顯示的正弦信號(hào)已可以很好地與噪聲區(qū)分)有任何影響。
如果將頻譜儀設(shè)置為正峰值檢波模式,可以注意到以下兩點(diǎn):首先,如果 VBW > RBW,則改變分辨率帶寬對(duì)噪聲的峰峰值起伏影響不大。其次,如果 VBW < RBW,則改變視頻帶寬似乎會(huì)影響噪聲電平。噪聲起伏變化不大是因?yàn)轭l譜儀當(dāng)前只顯示了噪聲的峰值。不過(guò),噪聲電平表現(xiàn)出隨著視頻帶寬而變,這是由于平均(平滑)處理的變化,因而使被平滑的噪聲包絡(luò)的峰值改變,如圖 2-30a。選擇平均檢波模式,平均噪聲電平并不改變,如圖 2-30b。
圖 2-30a. 正峰值檢波模式:減小視頻帶寬使峰值噪聲變小,但不能降低平均噪聲電平
圖 2-30b. 平均檢波模式:無(wú)論 VBW 與 RBW 的
比值為多少(3:1、1:10、1:100),噪聲電平保持不變
由于視頻濾波器有自己的響應(yīng)時(shí)間,因此當(dāng)視頻帶寬 VBW 小于分辨率帶寬 RBW 時(shí),掃描時(shí)間的改變近似與視頻帶寬的變化成反比,掃描時(shí)間(ST)通過(guò)以下公式來(lái)描述:
分析儀根據(jù)視頻帶寬、掃寬和分辨率帶寬,自動(dòng)設(shè)置相應(yīng)的掃描時(shí)間。
跡線平均
數(shù)字顯示提供了另一種平滑顯示的選擇:跡線平均。這是與使用平均檢波器完全不同的處理過(guò)程。它通過(guò)逐點(diǎn)的兩次或多次掃描來(lái)實(shí)現(xiàn)平均,每一個(gè)顯示點(diǎn)的新數(shù)值由當(dāng)前值與前一個(gè)平均值再求平均得到:
因此,經(jīng)過(guò)若干掃描后顯示會(huì)漸漸趨于一個(gè)平均值。通過(guò)設(shè)置發(fā)生平均的掃描次數(shù),可以像視頻濾波那樣選擇平均或平滑的程度。圖 2-31 顯示了不同掃描次數(shù)下獲得的跡線平均效果。盡管跡線平均不影響掃描時(shí)間,但因?yàn)槎啻螔呙栊枰欢ǖ臅r(shí)間,因此要達(dá)得期望的平均效果所用的時(shí)間與采用視頻濾波方式所用的時(shí)間大致相同。
圖 2-31. 掃描次數(shù)分別為 1、5、20、100
(每組掃描對(duì)應(yīng)跡線位置偏移從上到下)時(shí)的跡線平均效果
在大多數(shù)場(chǎng)合里無(wú)論選擇哪種顯示平滑方式都一樣。如果被測(cè)信號(hào)是噪聲或非常接近噪聲的低電平正弦信號(hào),則不管使用視頻濾波還是跡線平均都會(huì)得到相同的效果。
不過(guò),兩者之間仍有一個(gè)明顯的區(qū)別。視頻濾波是對(duì)信號(hào)實(shí)時(shí)地進(jìn)行平均,即隨著掃描的進(jìn)行我們看到的是屏幕上每個(gè)顯示點(diǎn)的充分平均或平滑效果。每個(gè)點(diǎn)只做一次平均處理,在每次掃描上的處理時(shí)間約為 1/VBW。而跡線平均需要進(jìn)行多次掃描來(lái)實(shí)現(xiàn)顯示信號(hào)的充分平均,且每個(gè)點(diǎn)上的平均處理發(fā)生在多次掃描所需的整個(gè)時(shí)間周期內(nèi)。
所以對(duì)于某些信號(hào)來(lái)說(shuō),采用不同的平滑方式會(huì)得到截然不同的效果。比如對(duì)一個(gè)頻譜隨時(shí)間變化的信號(hào)采用視頻平均時(shí),每次掃描都會(huì)得到不同的平均結(jié)果。但是如果選擇跡線平均,所得到的結(jié)果將更接近于真實(shí)的平均值,見(jiàn)圖 2-32a 和 2-32b。
圖 2-32a 和 2-32b 顯示對(duì)調(diào)頻廣播信號(hào)分別應(yīng)用視頻濾波和跡線平均,所產(chǎn)生的不同效果。
圖 2-32a. 視頻濾波
圖 2-32b. 跡線平均
時(shí)間選通
具有時(shí)間選通功能的頻譜分析儀可以獲得頻域上占據(jù)相同部分而時(shí)域上彼此分離的信號(hào)的頻譜信息。通過(guò)利用外部觸發(fā)信號(hào)調(diào)整這些信號(hào)間的間隔,可以實(shí)現(xiàn)如下功能:
– 測(cè)量在時(shí)域上彼此分離的多個(gè)信號(hào)中的任意一個(gè)(例如,您可以分離出兩個(gè)時(shí)分而頻率相同的無(wú)線信號(hào)的頻譜)
– 測(cè)量 TDMA 系統(tǒng)中某個(gè)時(shí)隙的信號(hào)頻譜
– 排除干擾信號(hào)的頻譜,比如去除只存在于一段時(shí)間的周期性脈沖邊緣的瞬態(tài)過(guò)程
為什么需要時(shí)間選通
傳統(tǒng)的頻域頻譜分析儀在分析某些信號(hào)時(shí)只能提供有限的信息。這些較難分析的信號(hào)類(lèi)型包括:
– 射頻脈沖
– 時(shí)間復(fù)用
– 時(shí)分多址(TDMA)
– 頻譜交織或非連續(xù)
– 脈沖調(diào)制
有些情況,時(shí)間選通功能可以幫助您完成一些往常即便有可能進(jìn)行但也非常困難的測(cè)量。
測(cè)量時(shí)分雙工信號(hào)
如何使用時(shí)間選通功能執(zhí)行復(fù)雜的測(cè)量,請(qǐng)見(jiàn)圖 2-33a。圖中顯示了一個(gè)簡(jiǎn)化的數(shù)字移動(dòng)信號(hào),其中包含無(wú)線信號(hào) #1 和 #2,它們占據(jù)同一頻道而時(shí)間分用。每路信號(hào)發(fā)送一個(gè) 1 ms 的脈沖,然后關(guān)閉,而后另一路信號(hào)再發(fā)送 1 ms。問(wèn)題的關(guān)鍵是如何測(cè)量每個(gè)發(fā)射信號(hào)單獨(dú)的頻譜。
圖 2-33a. 在時(shí)域里簡(jiǎn)化的數(shù)字移動(dòng)無(wú)線信號(hào)
令人遺憾的是,傳統(tǒng)的頻譜分析儀并不能實(shí)現(xiàn)這一點(diǎn)。它只能顯示兩個(gè)信號(hào)的混合頻譜,如圖 2-33b 所示。而現(xiàn)代分析儀利用時(shí)間選通功能以及一個(gè)外部觸發(fā)信號(hào),就能夠觀察到單獨(dú)的無(wú)線信號(hào) #1(或 #2)的頻譜并確定其是否存在所顯示的雜散信號(hào),如圖2-33c。
調(diào)整這些參數(shù)可以讓您觀察到所需的某個(gè)時(shí)間段的信號(hào)頻譜。如果剛好在感興趣的時(shí)間段里僅有一個(gè)選通信號(hào),那么就可以使用如圖 2-34 所示的電平選通信號(hào)。但是在許多情況下,選通信號(hào)的時(shí)間不會(huì)與我們要測(cè)量的頻譜完全吻合。所以更靈活的方法是結(jié)合指定的選通時(shí)延和選通脈沖寬度采用邊緣觸發(fā)模式來(lái)精確定義想測(cè)量信號(hào)的時(shí)間周期。
圖 2-34. 電平觸發(fā):頻譜分析儀只在選通觸發(fā)信號(hào)高于某個(gè)確定的電平時(shí)才測(cè)量頻譜
圖 2-35. 采用 8 個(gè)時(shí)隙的 TDMA 信號(hào)(本例為 GSM 信號(hào)),時(shí)隙 0 為“關(guān)閉”。
考慮如圖 2-35 所示的 8 個(gè)時(shí)隙的 GSM 信號(hào)。每個(gè)突發(fā)脈沖序列的長(zhǎng)度為 0.577 ms,整個(gè)幀長(zhǎng) 4.615 ms。我們可能只對(duì)某個(gè)指定時(shí)隙內(nèi)的信號(hào)頻譜感興趣。本例中假設(shè) 8 個(gè)可用時(shí)隙中使用了兩個(gè)(時(shí)隙 1 和 3),如圖 2-36。
當(dāng)在頻域中觀察此信號(hào)時(shí),見(jiàn)圖 2-37,我們觀察到頻譜中存在多余的雜散信號(hào)。為了解決這個(gè)問(wèn)題并找到干擾信號(hào)的來(lái)源,我們需要確定它出現(xiàn)在哪一個(gè)時(shí)隙里。如果要觀察時(shí)隙 3,我們可以將選通的觸發(fā)設(shè)置在時(shí)隙 3 中的突發(fā)脈沖序列的上升沿并指定選通時(shí)延為 1.4577 ms、選通脈沖寬度為461.60 μs,如圖 2-38 所示。選通時(shí)延確保了在整個(gè)突發(fā)脈沖序列持續(xù)期間我們只測(cè)量時(shí)隙 3 信號(hào)的頻譜。注意一定要謹(jǐn)慎地選擇選通開(kāi)始和停止值,以避開(kāi)突發(fā)脈沖序列的上升沿和下降沿,因?yàn)樾枰跍y(cè)量前留出一些時(shí)間等待 RBW 濾波信號(hào)穩(wěn)定下來(lái)。圖 2-39. 顯示了時(shí)隙 3 的頻譜,表明雜散信號(hào)并不是由此突發(fā)脈沖引起的。
實(shí)現(xiàn)時(shí)間選通的三種常見(jiàn)方法
– FFT 選通
– 本振選通
– 視頻選通
圖 2-36. 只有時(shí)隙 1 和 3“開(kāi)啟”的 GSM 信號(hào)在零掃寬(時(shí)域)時(shí)的顯示。
圖 2-37. 兩個(gè)時(shí)隙“開(kāi)啟”的 GSM 信號(hào)的頻域顯示,頻譜中出現(xiàn)多余的雜散信號(hào)。
圖 2-38. 使用時(shí)間選通觀察 GSM 信號(hào)時(shí)隙 3 的頻譜。
圖 2-39. 時(shí)隙3 的頻譜表明雜散信號(hào)不是由此突發(fā)脈沖導(dǎo)致的。
選通 FFT
Keysight X 系列信號(hào)分析儀具有內(nèi)置的 FFT 功能。在此模式下,觸發(fā)啟用后經(jīng)過(guò)所選時(shí)延,頻譜儀開(kāi)始捕獲數(shù)據(jù)并進(jìn)行 FFT 處理。中頻信號(hào)經(jīng)數(shù)字化后在 1.83/RBW 的時(shí)間周期內(nèi)被采集。基于這個(gè)數(shù)據(jù)采集計(jì)算 FFT,得到信號(hào)的頻譜。因此,該頻譜存在于已知時(shí)間段的某個(gè)特定時(shí)間。當(dāng)頻譜儀掃寬比 FFT 最大寬度窄時(shí),這是速度最快的選通技術(shù)。
為了獲得盡可能大的頻率分辨率,應(yīng)選擇頻譜儀可用的最小的 RBW(它的捕獲時(shí)間與待測(cè)時(shí)間周期相適應(yīng))。但實(shí)際中并非總需如此,您可以選擇一個(gè)較寬的 RBW 同時(shí)相應(yīng)地減小選通脈沖寬度。在 FFT選通應(yīng)用中最小可用的 RBW 通常比其他選通技術(shù)的最小可用 RBW 更窄,因?yàn)樵谄渌夹g(shù)里中頻必須在脈沖持續(xù)期內(nèi)充分穩(wěn)定,這需要比 1.83/RBW 更長(zhǎng)的時(shí)間。
本振選通
本振選通有時(shí)也稱(chēng)為掃描選通,是另一項(xiàng)時(shí)間選通技術(shù)。在本振選通模式下,我們通過(guò)控制由掃描發(fā)生器產(chǎn)生的斜波電壓來(lái)掃描本振,如圖 2-40 所示。像所有頻譜儀一樣,當(dāng)選通信號(hào)開(kāi)啟時(shí),本振信號(hào)在頻率上爬升。當(dāng)選通關(guān)閉后,掃描發(fā)生器的輸出電壓固定,本振在頻率上停止上升。由于這種技術(shù)可以在每個(gè)突發(fā)脈沖信號(hào)持續(xù)期間內(nèi)對(duì)多個(gè)信號(hào)收集單元進(jìn)行測(cè)量,因此它的速度比視頻選通快很多。我們同樣以前面提到的 GSM 信號(hào)為例。
圖 2-40. 在本振選通模式下,本振只在選通間隔內(nèi)掃描
本振選通
本振選通有時(shí)也稱(chēng)為掃描選通,是另一項(xiàng)時(shí)間選通技術(shù)。在本振選通模式下,我們通過(guò)控制由掃描發(fā)生器產(chǎn)生的斜波電壓來(lái)掃描本振,如圖 2-40 所示。像所有頻譜儀一樣,當(dāng)選通信號(hào)開(kāi)啟時(shí),本振信號(hào)在頻率上爬升。當(dāng)選通關(guān)閉后,掃描發(fā)生器的輸出電壓固定,本振在頻率上停止上升。由于這種技術(shù)可以在每個(gè)突發(fā)脈沖信號(hào)持續(xù)期間內(nèi)對(duì)多個(gè)信號(hào)收集單元進(jìn)行測(cè)量,因此它的速度比視頻選通快很多。我們同樣以前面提到的 GSM 信號(hào)為例。
用標(biāo)準(zhǔn)非選通模式的 X 系列信號(hào)分析儀掃過(guò) 1 MHz 掃寬需要 14.6 ms,如圖 2-41 所示。如果選通脈沖寬度為 0.3 ms,頻譜儀必須在 49(14.6 除以 0.3)個(gè)選通信號(hào)間隔時(shí)間內(nèi)掃描;如果 GSM 信號(hào)的完整幀長(zhǎng)為 4.615 ms,那么總的測(cè)量時(shí)間就等于 49 個(gè)選通信號(hào)間隔乘以 4.615 ms 等于 226 ms。這與后面所說(shuō)的視頻選通技術(shù)相比在速度上有了很大的提高。X 系列信號(hào)分析儀和 PSA 系列頻譜分析儀均具有本振選通功能。
圖 2-41. GSM 信號(hào)頻譜
視頻選通
一些頻譜儀(包括 Keysight 8560、8590 和E S A 系列)采用了視頻選通的信號(hào)分析技術(shù)。這種情況下,當(dāng)選通信號(hào)處于截止?fàn)顟B(tài)時(shí)視頻電壓被關(guān)閉或?yàn)椤柏?fù)無(wú)窮大”。檢波器設(shè)置為峰值檢波,掃描時(shí)間的設(shè)置必須保證選通信號(hào)在每個(gè)顯示點(diǎn)或信號(hào)收集單元內(nèi)至少出現(xiàn)一次,從而確保峰值檢波器能夠獲得相應(yīng)時(shí)間間隔內(nèi)的真實(shí)數(shù)據(jù),否則會(huì)出現(xiàn)沒(méi)有數(shù)據(jù)值的跡線點(diǎn),進(jìn)而導(dǎo)致不完整的顯示頻譜。因此,最小掃描時(shí)間 = 顯示點(diǎn)數(shù) N x 突發(fā)脈沖的時(shí)間周期。例如,在 GSM 測(cè)量中,完整幀長(zhǎng)為 4.615 ms,假設(shè) ESA 頻譜儀設(shè)置為缺省顯示點(diǎn)數(shù) 401,那么對(duì)于 GSM 視頻選通測(cè)量的最小掃描時(shí)間是 401 x 4.615 ms = 1.85 s。
有些 TDMA 格式的周期時(shí)間長(zhǎng)達(dá) 90 ms,導(dǎo)致如果使用視頻選通技術(shù)需要很長(zhǎng)的掃描時(shí)間。現(xiàn)在,您已經(jīng)知道典型的模擬頻譜分析儀的工作原理,以及部分重要功能特性的使用方法,接下來(lái)要討論的是當(dāng)使用數(shù)字技術(shù)替代某些模擬電路時(shí),對(duì)頻譜分析儀的性能有何改善。
圖 2-42. 具有視頻選通的頻譜分析儀的結(jié)構(gòu)框圖
審核編輯:湯梓紅
評(píng)論
查看更多