二極管作為電子元件中具有兩個電極的元件,它的電流流向只有單向。二極管鉗位電路的鉗位之意,就是鉗制輸入電壓峰值在預定電平輸出電壓,此過程不會改變信號。而二極管穩壓電路因使用穩壓二極管,俗稱穩壓管或齊納管。穩壓管穩壓二極管利用pn結反向擊穿狀態,能夠在電壓保持不變的情況下,允許電流在一定的大范圍內變化。
對于鉗位電路二極管跟穩壓電路二極管很多人看了資料卻依舊無法理解。其實,要理解穩壓及鉗位電路二極管,需要先弄懂二極管伏安特性曲線。
先看第一象限的正向特性:
我們發現,當正向電壓從零開始上升,在0.4V之前,二極管的正向電流很小。但從0.7V開始,電流迅速增加。
再看第二象限的反向特性:
我們發現,我們發現,反向電壓一直到達-40V時,反向電流也即反向漏電流近乎為零。
這說明,二極管的正向電壓大于0.7V后,其等效電阻很小,這叫做二極管的正向特性;二極管的反向特性是反向電阻很大。
我們來看下圖:
我們先來看圖1:
圖1中,二極管處于正向接法,它的管壓降是0.7V。因此,電阻R上的電壓為:
UR=6-0.7=5.3V
那么流過電阻R的電流呢?
IR=5.3/5.1=1.04mA
現在我們再來看圖2:
我們看到,兩只二極管的正極都接到12V,因此兩只二極管都屬于正向接法。于是,D1二極管的正極應當是6+0.7V=6.7V,D2二極管的正極應當是2+0.7=2.7V。那么電路的輸出端電壓Usr到底是多少呢?
假設Usc=6.7V,于是二極管D2將處于正向接法。又因為二極管D2的壓降是0.7V,因此二極管D2的正極將會被強制性地拉到2.7V。如此一來,二極管D1將處于反偏狀態,即D1的負極電壓比正極電壓高。
注意:D2導通后,D1的正極變成2.7V,同時D1的負極是6V,因此D1被反向偏置而截止。
也就是說,輸出電壓Usc被強制性地鉗位在2.7V。哪個電壓低,電路的輸出電壓就是低電壓再加上0.7V。
我們來看一個實例:
此圖是一套用于控制晶閘管觸發的電路。按圖示我們能看到用正與門構成的鉗位電路。三個輸入端分別是測控端電壓、PID控制和觸發脈沖電路。
測控端電壓電路正常輸出是脈動直流,高電平的占空比較大;PID控制輸出也是高的電平,而觸發脈沖則輸出正負交替的高電平脈沖。可見,在正常情況下,與門的輸出由觸發脈沖來決定,畢竟零電平也是脈沖的一部分。
可見,鉗位電路的應用還是很廣泛的。
再談談穩壓二極管。
我們看上圖的測控端電壓電路:
設變壓器的初級電壓為380Vac,次級為24Vac,于是經過橋式整流后,其平均電壓為0.9X24=21.6V,屬于脈動直流。但實際計算時不能這樣算,必須用最大值來計算。
我們知道穩壓二極管工作在反向擊穿區,見第一幅圖的第三象限。它的曲線特點是:電流變化很大,但電壓變化很小,這就是它的穩壓原理。不過要注意:此時二極管處于反向接法,即穩壓二極管工作在反向電壓下。
設,上圖中的穩壓二極管穩定電壓是12V,最大穩定電流是25毫安。我們先把電阻R2開路,來計算R1的值。
故R1取值為820歐,功率為0.51W,取標稱值1W。
此時穩壓二極管兩端的波形是什么樣的?就是波形圖中下部的綠色部分。在這里,穩壓二極管起到給半波直流波形削頭的作用。
現在,我們把R2接入,于是流過穩壓二極管的電流變小了。但只要流過穩壓二極管的電流仍然在它的穩定電流范圍之內,則穩壓二極管的穩壓作用就能維持。
設穩壓二極管的最小穩定電流為5毫安,則流過R2和R3的電流為25-5=20毫安。故R2+R3的取值為:
實際上,我們看到R2+R3的和只要不低于600歐即可,故R2+R3的實際值會大于計算值。具體取值與我們的解答無關,此處忽略。
我們看到,晶體管T1的集電極也有一只穩壓二極管D2,它的用途同樣也是削幅,使得輸出到后級的脈沖幅度最高值就等于穩壓二極管的穩定電壓。
評論
查看更多