電路描述
該電路由用作模擬前端電路的AD8295和AD8275、ADC AD7687以及基準電壓源ADR431組成,只需少量外部元件進行去耦等。
儀表放大器(集成于 AD8295)
AD8295中集成的儀表放大器(IA)的工作條件設置為1倍的增益。如果應用需要更高的增益,可以增加一個適當的外部增益電阻。AD8295的電源為±15 V,完全支持±10 V工業輸入信號電平。儀表放大器的基準電壓引腳接地,因此AD8295的輸出以地為基準。
差動放大器/衰減器( AD8275)
AD8295儀表放大器輸出單端信號,最大幅度為±10 V。必須將該信號衰減并轉換到適當的電平,以便驅動AD7687 ADC。如果在AD8295的輸出端直接使用一個簡單的阻性電平衰減器級,將無法提供差分輸出來驅動ADC。AD8275 (G = 0.2)電平轉換器是一個差動放大器,內置精密激光調整匹配薄膜電阻,可確保低增益誤差、低增益漂移(最大1 ppm/°C)和高共模抑制(80 dB)特性。AD8275具有+3.3 V至+15 V的寬電源電壓范圍,采用+5 V單電源供電時,輸入電壓范圍寬達?12.3 V至+12 V。
圖1所示電路使用一個平衡差動放大器,它由AD8275 (U2)和AD8295中的一個非專用運放(U1-C)組成。此運放(U1-C)用于反轉AD8275的正輸出(從而提供互補的負輸出),并且驅動 AD8275的REF1和REF2引腳。差分輸出的輸出共模電壓(VCOM = 1.25 V)由連接到2.5 V基準電壓源的10 kΩ外部電阻分壓器產生,并且應用于U1-C的同相輸入。描述電路操作的方程式如下:
VOUTP + VOUTN = 2 × VCOM
VOUTP = VOUTN + 0.2 × VIN
VOUTP = VCOM + 0.1 × VIN
VOUTN = VCOM ? 0.1 × VIN
根據以上方程式,對于±10 V輸入電壓,ADC的各輸入電壓(VOPTP和VOUTN)擺幅為0.25 V至2.25 V,彼此180°反相,共模電壓為1.25 V。因此,差分信號使用ADC可用差分輸入范圍5 V中的4 V。
ADR431是2.5 V XFET系列基準電壓源,具有低噪聲、高精度和低溫度漂移性能。ADR431驅動電阻分壓器和AD7687 ADC的基準電壓輸入。ADR431輸出由AD8295中的另一個非專用運放(U1-B)緩沖,并且驅動AD7687的電源(VDD)。由兩個33 Ω電阻和一個1.5 nF電容組成的一個單極點RC濾波器充當AD7687的3 MHz截止抗混疊和降噪濾波器。
布局布線考慮
該電路或任何高速/高分辨率電路的性能都高度依賴于適當的PCB布局,包括但不限于電源旁路、信號路由以及適當的電源層和接地層。有關PCB布局的詳情,請參見指南 Tutorial MT-031、 MT-101和“高速印刷電路板布局實用指南”一文。
圖2. Kaiser窗口(參數 = 20)、20 kHz輸入、250 kSPS采樣速率下的FFT
系統性能
交流性能在系統級進行測試,AD7687的采樣速率為250 kSPS。圖2所示為5 V p-p 20 kHz輸入時的FFT測試結果。圖3所示為10 V DC輸入時的ADC輸出直方圖。
評估軟件產生的結果如下:
SNR = 85.531 dBFS (不含諧波)
信納比(SINAD) = 81.432 dBFS.
SFDR = 77.403 dBFS.
THD = –76.479 dBFS
圖3. 10 V DC輸入時的直方圖,15,000個樣本
評論
查看更多