MEMS ? 傳感器芯片
電導(dǎo)率是用來表示物質(zhì)導(dǎo)電性能的物理量,是電阻率的倒數(shù)。對于溶液而言,其電導(dǎo)率的高低反映的是溶液導(dǎo)通電流的能力。因而電導(dǎo)率的準確測量具有重要意義。電極式電導(dǎo)率傳感器是通過電導(dǎo)池來進行測量的,電導(dǎo)池的參數(shù)與電極的位置和形狀都密切相關(guān)。傳統(tǒng)的機械加工制造方法由于精度的限制,制成的電導(dǎo)池會形成較大的隨機加工誤差,這就給后續(xù)標定工作帶來了一系列困難。而MEMS技術(shù)可以批量地制成一致性較好的器件,因而極大地提高了傳感器的性能,降低了生產(chǎn)成本,成為目前主流的傳感器制造技術(shù)。
正是由于MEMS的上述優(yōu)勢,這種技術(shù)被越來越多地應(yīng)用于制作電導(dǎo)率測量器件。美國佛羅里達大學(xué)的D. Fries等人用PCB多層板做基底,采用無掩膜光刻法和其他MEMS工藝制備了鹽度測試系統(tǒng)。Heather A Broadbent等人也開發(fā)出了基于液晶聚合物(LCP)材料的電導(dǎo)率印制電路板MEMS制造技術(shù),然而PCB MEMS工藝在與IC工藝兼容時會出現(xiàn)困難,且PCB工藝與MEMS工藝無法同時進行,很難批量生產(chǎn)。隨后丹麥Lyngby大學(xué)的Hyldgard基于硅材料的MEMS技術(shù)制作了尺寸達到4mm x 6mm的CTD系統(tǒng)(鹽度、溫度、深度集成測量系統(tǒng)),其中就包含了一個約2mm x 3mm的方形四電極電導(dǎo)率傳感器和溫度傳感器。伊利諾伊大學(xué)的Dongming He等研制了硅基的溫度電導(dǎo)率集成傳感器。此外,還有相關(guān)的美國專利也顯示了由MEMS工藝制成的圓環(huán)形四電極電導(dǎo)率構(gòu)成的CTD系統(tǒng)。但上述文章中的MEMS芯片的工藝過程都較為復(fù)雜,制備過程中需要多次光刻、顯影、刻蝕等步驟,成本較高,不利于推廣使用。
國內(nèi)的科研單位也開展了許多相關(guān)研究,但大多是采用機械加工的制造工藝。最有成效的是國家海洋技術(shù)中心研制成功的高精度四電極和七電極電導(dǎo)率測量系統(tǒng),為我國的海洋科考和水質(zhì)探測事業(yè)提供了有力的支持。此外,清華大學(xué)水利水電工程系的王洪偉也提出了一種四電極電導(dǎo)率測量探頭,并分析了其電場分布特性與測量原理。還有許多關(guān)于電導(dǎo)率測量的文獻是從電路硬件或單片機軟件功能等方面入手的,這些研究工作對于測量的關(guān)鍵部位——電導(dǎo)池和電極的制作工藝改進不大。本文提出的硅基MEMS技術(shù)制造的溫度電導(dǎo)率芯片具有工藝流程簡單,制備容易等特點,可以降低成本,且電導(dǎo)池結(jié)構(gòu)和電極形狀的設(shè)計還使測量探頭具備一定的抗污染性能。測試實驗證實了芯片具有良好的性能。
1 測量原理與集成芯片結(jié)構(gòu)
溫度對于溶液電導(dǎo)率有很大的影響,且其影響程度依溶液的不同而不同。在測量電導(dǎo)率時通常使用公式Ct = Ccal · [1 + α(T - Tcal)] 來補償溫度的影響。上式中Ct為某一溫度下的電導(dǎo)率;Ccal為標準溫度(通常取25℃)下的電導(dǎo)率;Tcal為標準溫度值;α為標準溫度下溶液的溫度系數(shù)。采用薄膜鉑電阻進行測量,由于鉑電阻阻值與溫度有很好的線性關(guān)系,故只需要將溫度傳感器進行標定即可獲得比較準確的溫度數(shù)據(jù)。
電導(dǎo)率測量則較為復(fù)雜,測量溶液的電導(dǎo)率時,金屬電極與溶液會在二者交界面處產(chǎn)生一系列復(fù)雜的電化學(xué)反應(yīng),即電極極化效應(yīng),從而影響測量精度。采用交流激勵和多電極測量體系,可以有效地減弱極化效應(yīng)對電導(dǎo)率測量的影響。交流正弦波或交流方波作為激勵源可以使電極上通過的電流密度近似為零,從而可以大大消除電極對溶液的電解作用;四電極測量法將電流電極和電壓電極分開(見圖1),并通過電極形狀和外圍電路的精巧設(shè)計使得電壓電極上流過的電流近似為零,并用差分檢測的方法除去了電壓電極與溶液間形成的雙電層對電壓測量的影響,這樣就可以得到被測溶液等效電阻兩端的準確電壓值。
圖1 四電極電導(dǎo)率測量原理
本文采用雙運放測量法進行電導(dǎo)率的測量。此測量結(jié)構(gòu)如圖2所示,是將電壓電極接至運放的負輸入端,電流電極接至運放的輸出端,由于運放工作在深度負反饋狀態(tài),因而負輸入端的回路上沒有電流通過,這樣就可以通過控制運放正輸入端的電壓值來控制待測溶液Rs兩端的電壓值。再通過測量電流回路中采樣電阻上的電壓信號,就可以知道回路中流過的電流值,因此可以計算出溶液電導(dǎo)率。所用公式如下:
式中C為溶液的電導(dǎo)率,單位μS/cm;K為電導(dǎo)池常數(shù),與四個電極的形狀、位置、大小等因素有關(guān);v為電壓電極上的電壓;i為通過電流電極的電流值。
圖2 雙運放測量結(jié)構(gòu)
集成芯片中的電導(dǎo)池采用開放式的結(jié)構(gòu)設(shè)計,將電流電極與電壓電極垂直地安裝在支架的側(cè)面,使電極所在的平面與水平面垂直,以減少可沉積在電極表面的污染物與生物對電導(dǎo)率測量的影響。芯片寬10mm,長15mm,中心是半徑為2mm的圓盤形電流電極,面積較大的電流電極可以減小由電極阻抗引起的誤差,增大系統(tǒng)的電流靈敏度。周圍的一圈圓環(huán)形電極是電壓電極,將電壓電極設(shè)計成環(huán)形,是為了增強系統(tǒng)的抗污染能力,當有部分電壓電極被污物覆蓋時,其他未被覆蓋的部分均能感應(yīng)到正常的電壓信號。最外部的一圈圓形金屬是用于測量溫度的鉑電阻,阻值約為500Ω,這使得系統(tǒng)可以實時地對電導(dǎo)率測量進行溫度補償,以提高電導(dǎo)率測量的精度。電導(dǎo)池兩側(cè)的芯片上各有一個溫度傳感器,通過取均值的方法,能更準確地感知整個電導(dǎo)池的溫度。圖3所示為芯片的批量制作圖與封裝圖。
圖3 批量制作的集成測量芯片與封裝圖
2 集成芯片制備工藝流程
采用RCA標準清洗法對硅片進行清洗以得到干凈的硅片表面。硅片兩面生長SiO2作為絕緣層。在SiO2表面生長低應(yīng)力Si3N4薄膜,旋涂AZ1500光刻膠,光刻顯影得到相應(yīng)的圖形。采用等離子磁控濺射設(shè)備在上表面濺射一層3000?厚的鉑金屬作為電極。Lift off將多余的鉑金除去得到規(guī)則的圖形。最后在硅片上表面旋涂SU8膠并顯影將溫度傳感器與電導(dǎo)率傳感器分開,得到最后的芯片。圖4所示即為工藝流程圖。
圖4 芯片工藝流程圖
3 實驗部分
溫度部分采用A級PT100溫度傳感器作為標準,在溫度檢定箱中對溫度傳感器進行標定,測試數(shù)據(jù)如表1所示。從標定數(shù)據(jù)和曲線(圖5)可以看出,溫度傳感器具有很好的線性度,且傳感器遲滯誤差小,根據(jù)鉑電阻的阻值即可方便地確定芯片所處環(huán)境的溫度。
圖5 溫度傳感器標定曲線圖
電導(dǎo)率部分采用METTLER TOLEDO FG3電導(dǎo)率測試儀作為標準,這種電導(dǎo)率測試儀具有很高的精度,測試范圍0 ~ 199.9mS/cm,精度為0.5% F.S。通過比對實驗測試了芯片的性能,圖6說明芯片能夠獲得較好的線性測量結(jié)果。實驗數(shù)據(jù)如表2所示。
圖6 電導(dǎo)率測試結(jié)果圖
4 結(jié)論
實驗證明使用MEMS技術(shù)制造的溫度和電導(dǎo)率傳感器集成芯片具有良好的性能,通過批量制造可以獲得大量質(zhì)優(yōu)價廉的傳感器芯片,這將有利于芯片的大范圍推廣和使用。此類芯片可以用于便攜式儀表或水環(huán)境在線自動監(jiān)測設(shè)備,也可用于大型的測試系統(tǒng)。今后可以發(fā)展更多功能的集成芯片,將其他溶液參數(shù)的測量功能集成在一起,實現(xiàn)多參量的片上測量;同時,還可以將傳感器的尺寸進一步縮小,這將使微量甚至痕量液體的溫度和電導(dǎo)率參數(shù)的測量變得更加容易。
評論
查看更多