色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>制造/封裝>PCB制造相關(guān)>優(yōu)化PCB布局可提升轉(zhuǎn)換器性能 - 全文

優(yōu)化PCB布局可提升轉(zhuǎn)換器性能 - 全文

上一頁(yè)123全文

本文導(dǎo)航

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

接地—升壓型DC/DC轉(zhuǎn)換器PCB布局

本文將探討升壓型DC/DC轉(zhuǎn)換器PCB布局中“接地”相關(guān)的內(nèi)容。經(jīng)常聽到“接地很重要”、“需要加強(qiáng)接地設(shè)計(jì)”等說(shuō)法。實(shí)際上,在升壓型DC/DC轉(zhuǎn)換器PCB布局中,沒有充分考慮接地、背離基本規(guī)則
2022-11-09 09:24:44534

半橋DC-DC轉(zhuǎn)換器PCB設(shè)計(jì)指南

今天給大家分享的是:半橋DC-DC轉(zhuǎn)換器PCB設(shè)計(jì),PCB布局注意點(diǎn)。
2023-06-05 10:37:38556

300mA隔離式輸出的面向Fly-buck的EMI優(yōu)化布局設(shè)計(jì)參考設(shè)計(jì)包含BOM,PCB文件及光繪文件

描述此參考設(shè)計(jì) (PMP11052) 演示了 Fly-buck 設(shè)計(jì)的 EMI 性能改進(jìn),其中對(duì)所有高 di/dt 環(huán)路的布局進(jìn)行了優(yōu)化,并將該布局與另一個(gè)類似降壓轉(zhuǎn)換器布局布局進(jìn)行比較。主要特色
2018-08-18 06:50:18

868-930MHz的RF布局參考設(shè)計(jì)實(shí)現(xiàn)最佳性能PCB布局

描述這種“射頻布局參考設(shè)計(jì)”顯示出卓越的適用于在 868 MHz 和 915 MHz 頻帶中低功耗射頻設(shè)備的去耦和布局技術(shù)。主要特色推薦的實(shí)現(xiàn)最佳性能PCB 布局PCB 層疊射頻去耦PCB 天線和 SMA 連接組件類型和值組件制造商
2018-11-20 15:00:18

PCB布局布線的相關(guān)基本原理和設(shè)計(jì)技巧

在電子產(chǎn)品設(shè)計(jì)中,PCB布局布線是最重要的一步,PCB布局布線的好壞將直接影響電路的性能?,F(xiàn)在,雖然有很多軟件可以實(shí)現(xiàn)PCB自動(dòng)布局布線。但是隨著信號(hào)頻率不斷提升,很多時(shí)候,工程師需要了解有關(guān)PCB
2021-02-22 07:30:00

PCB布線設(shè)計(jì)之AD轉(zhuǎn)換器的布線技巧

A/D轉(zhuǎn)換器片內(nèi)由模擬占主導(dǎo)轉(zhuǎn)變?yōu)橛蓴?shù)字占主導(dǎo),PCB的布線準(zhǔn)則卻沒有改變。當(dāng)布線設(shè)計(jì)人員設(shè)計(jì)混合信號(hào)電路時(shí),為實(shí)現(xiàn)有效布線,仍需要關(guān)鍵的布線知識(shí)。本文將以逐次逼近型A/D轉(zhuǎn)換器和∑-△型A/D轉(zhuǎn)換器
2018-08-28 15:28:40

PCB設(shè)計(jì)整板布局優(yōu)化及分析

PCB設(shè)計(jì)整板布局有哪些基本原則?如何進(jìn)行優(yōu)化與分析?布局的合理與否直接影響到產(chǎn)品的壽命、穩(wěn)定性、EMC (電磁兼容)等,必須從電路板的整體布局、布線的通性和PCB制造性、機(jī)械結(jié)構(gòu)、散熱
2017-06-20 15:15:08

優(yōu)化PCB布局提升轉(zhuǎn)換器性能

  對(duì)于開關(guān)模式轉(zhuǎn)換器而言,出色的印制電路板(PCB布局對(duì)獲得最佳系統(tǒng)性能至關(guān)重要。若PCB設(shè)計(jì)不當(dāng),則可能造成以下后果:對(duì)控制電路產(chǎn)生太多噪聲而影響系統(tǒng)的穩(wěn)定性;在PCB跡線上產(chǎn)生過(guò)多損耗而
2018-11-22 15:22:33

優(yōu)化PCB布局提升轉(zhuǎn)換器性能

對(duì)于開關(guān)模式轉(zhuǎn)換器而言,出色的印制電路板(PCB)布局對(duì)獲得最佳系統(tǒng)性能至關(guān)重要。若PCB設(shè)計(jì)不當(dāng),則可能造成以下后果:對(duì)控制電路產(chǎn)生太多噪聲而影響系統(tǒng)的穩(wěn)定性;在PCB跡線上產(chǎn)生過(guò)多損耗而影響系統(tǒng)
2016-12-28 09:44:05

優(yōu)化電源模塊性能PCB布局技術(shù)

應(yīng)對(duì)復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來(lái)優(yōu)化模塊性能
2018-09-14 16:22:45

消除高性能DAQ系統(tǒng)中的EMI影響的降壓轉(zhuǎn)換器包括BOM及層圖

描述TIDA-01054 參考設(shè)計(jì)采用 LM53635 降壓轉(zhuǎn)換器幫助消除 EMI 對(duì)高于 16 位的數(shù)據(jù)采集 (DAQ) 系統(tǒng)的性能降低影響。借助該降壓轉(zhuǎn)換器,設(shè)計(jì)人員可以將電源解決方案放置在
2018-10-18 15:09:33

性能最大化Δ-Σ 轉(zhuǎn)換器

時(shí)鐘和PGA 的調(diào)整,相同數(shù)據(jù)速率在性能方面會(huì) 有所不同。在優(yōu)化數(shù)據(jù)轉(zhuǎn)換結(jié)果時(shí),對(duì)于這些方方面面做到完全了解并非易事。另外一些問題還包 括輸入阻抗、濾波響應(yīng)、抗混疊,以及長(zhǎng)期漂移。性能最大化Δ-Σ 轉(zhuǎn)換器 [hide][/hide]`
2011-10-21 11:24:17

ADC轉(zhuǎn)換器選型怎么搞?如何選擇最合適的ADC轉(zhuǎn)換器?

ADC轉(zhuǎn)換器選型怎么搞?如何選擇最合適的ADC轉(zhuǎn)換器?選型的時(shí)候除了考慮時(shí)序、精確度和重復(fù)性還要考慮什么?
2021-04-06 07:07:08

DC/DC轉(zhuǎn)換器PCB布局概述

DC/DC轉(zhuǎn)換器:設(shè)計(jì)篇,開始新的篇章“DC/DC轉(zhuǎn)換器PCB布局”。關(guān)于DC/DC轉(zhuǎn)換器的設(shè)計(jì),電路結(jié)構(gòu)和元器件選型當(dāng)然非常重要,PCB布局同樣很重要。即使電路圖紙和元器件常量正確,如果
2018-11-29 14:44:23

DC/DC轉(zhuǎn)換器的高密度印刷電路板(PCB布局

的范例涉及功率級(jí)組件的放置和布線。精心的布局同時(shí)提高開關(guān)性能、降低組件溫度并減少電磁干擾(EMI)信號(hào)。請(qǐng)細(xì)看圖1中的功率級(jí)布局和原理圖。圖1:四開關(guān)降壓-升壓型轉(zhuǎn)換器功率級(jí)布局和原理圖 在筆者看來(lái),這些都是設(shè)計(jì)高密度DC/DC轉(zhuǎn)換器時(shí)所面臨的挑戰(zhàn): 組件技術(shù)。組件技術(shù)的進(jìn)步是降低整體功耗的關(guān)鍵,尤…
2022-11-18 06:23:45

DC總線轉(zhuǎn)換器提升了系統(tǒng)電源管理性能

DC總線轉(zhuǎn)換器提升了系統(tǒng)電源管理性能
2012-08-14 20:50:57

Fly-Buck轉(zhuǎn)換器PCB布局技巧

需要最小化,因?yàn)槔锩嬗懈?di/dt 電流流過(guò)。圖 2. Fly-Buck 轉(zhuǎn)換器在一次側(cè)有兩個(gè)高 di/dt 環(huán)路。所有二次環(huán)路都是高 di/dt。 在布局 Fly-Buck 轉(zhuǎn)換器時(shí)還需要記住
2018-09-14 15:36:45

Fly-Buck轉(zhuǎn)換器PCB布局技巧分享

對(duì)降壓轉(zhuǎn)換器中的開關(guān)電流環(huán)路已經(jīng)很熟悉了,如圖 1 所示。包含輸入旁路電容器、VIN 引腳、高低側(cè)開關(guān)以及接地返回引腳的輸入環(huán)路承載著開關(guān)電流。該環(huán)路應(yīng)針對(duì)靜音工作進(jìn)行優(yōu)化,達(dá)到最小跡線長(zhǎng)度與最小
2022-11-22 07:18:07

一種高密度降壓型轉(zhuǎn)換器布局

在電路板上具有戰(zhàn)略意義的位置靈活部署轉(zhuǎn)換器的能力也很重要 —— 以大電流負(fù)載點(diǎn)(POL)模塊為例,處于鄰近負(fù)載的最佳位置降低導(dǎo)通壓降并改善負(fù)載瞬態(tài)性能。 請(qǐng)細(xì)看圖1中外形微縮的降壓型轉(zhuǎn)換器的功率級(jí)
2022-11-18 06:02:21

為什么使用DC-DC轉(zhuǎn)換器應(yīng)盡可能靠近負(fù)載的負(fù)載點(diǎn)(POL)電源?

方法之一。負(fù)載點(diǎn)轉(zhuǎn)換器是一種電源DC-DC轉(zhuǎn)換器,放置在盡可能靠近負(fù)載的位置,以接近電源。因POL轉(zhuǎn)換器受益的應(yīng)用包括高性能CPU、SoC和FPGA——它們對(duì)功率級(jí)的要求都越來(lái)越高。例如,在汽車應(yīng)用中
2021-12-01 09:38:22

介紹優(yōu)化SIMPLE SWITCHER電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)

全球出現(xiàn)的能源短缺問題使各國(guó)***都開始大力推行節(jié)能新政。電子產(chǎn)品的能耗標(biāo)準(zhǔn)越來(lái)越嚴(yán)格,對(duì)于電源設(shè)計(jì)工程師,如何設(shè)計(jì)更高效率、更高性能的電源是一個(gè)永恒的挑戰(zhàn)。本文從電源PCB布局出發(fā),介紹了優(yōu)化
2021-12-28 07:07:59

以ZXLD1370為例優(yōu)化PCB布局提升轉(zhuǎn)換器性能

  對(duì)于開關(guān)模式轉(zhuǎn)換器而言,出色的印制電路板(PCB布局對(duì)獲得最佳系統(tǒng)性能至關(guān)重要。若PCB設(shè)計(jì)不當(dāng),則可能造成以下后果:對(duì)控制電路產(chǎn)生太多噪聲而影響系統(tǒng)的穩(wěn)定性;在PCB跡線上產(chǎn)生過(guò)多損耗而
2018-09-14 16:07:51

使用高速轉(zhuǎn)換器時(shí)有哪些PCB布局布線規(guī)則?

使用高速轉(zhuǎn)換器時(shí),有哪些重要的PCB布局布線規(guī)則?
2021-04-21 06:58:58

使用高速轉(zhuǎn)換器時(shí)的PCB布局布線規(guī)則

地方通過(guò)一個(gè)電橋或連接點(diǎn)將這些接地層連在一起。因此,應(yīng)將連接點(diǎn)均勻地分布在分離的接地層上。最終,PCB上往往會(huì)有一個(gè)連接點(diǎn)成為返回電流通過(guò)而不會(huì)導(dǎo)致性能降低的最佳位置。此連接點(diǎn)通常位于轉(zhuǎn)換器附近或下方
2019-07-26 06:35:38

使用高速轉(zhuǎn)換器時(shí),有哪些重要的PCB布局布線規(guī)則?(第3部分)

使用高速轉(zhuǎn)換器時(shí),有哪些重要的PCB布局布線規(guī)則?第一部分討論了為什么AGND和DGND接地層未必一定分離,除非設(shè)計(jì)的具體情況要求您必須這么做。第二部分討論了輸電系統(tǒng)(PDS),以及電源層和接地
2018-10-30 14:56:34

使用高速轉(zhuǎn)換器時(shí),有哪些重要的PCB布局布線規(guī)則?(第1部分)

問:使用高速轉(zhuǎn)換器時(shí),有哪些重要的PCB布局布線規(guī)則?答:為了確保設(shè)計(jì)性能達(dá)到數(shù)據(jù)手冊(cè)的技術(shù)規(guī)格,必須遵守一些指導(dǎo)原則。首先,有一個(gè)常見的問題:“AGND和DGND接地層應(yīng)當(dāng)分離嗎?”簡(jiǎn)單回答
2018-10-30 15:01:16

使用高速轉(zhuǎn)換器的四個(gè)PCB布局布線規(guī)則

連接點(diǎn)將這些接地層連在一起。因此,應(yīng)將連接點(diǎn)均勻地分布在分離的接地層上。最終,PCB上往往會(huì)有一個(gè)連接點(diǎn)成為返回電流通過(guò)而不會(huì)導(dǎo)致性能降低的最佳位置。此連接點(diǎn)通常位于轉(zhuǎn)換器附近或下方。 設(shè)計(jì)電源層時(shí),應(yīng)
2019-01-18 15:38:01

反向降壓-升壓轉(zhuǎn)換器布局方式概述

子間隔之間,濾波電感從CIN切換至COUT。因?yàn)榻祲汉头聪蛟韴D的相似性,切換電流路徑的差異經(jīng)常被忽視,并且許多反向降壓-升壓設(shè)計(jì)和布局與降壓轉(zhuǎn)換器相同,僅優(yōu)化輸入電流回路中的小部分回路區(qū)域。降壓
2019-08-12 04:45:09

反向降壓-升壓轉(zhuǎn)換器布局

在此前的博文中,我討論了VIN范圍、VOUT范圍和可用輸出電流IOUT最大值的區(qū)別。布局的差異源自反向降壓-升壓轉(zhuǎn)換器和降壓變換的切換電流流動(dòng)路徑的差異——雖然至關(guān)重要——不容易理解。圖1顯示了
2022-11-15 06:00:03

基于移相控制的多路輸出降壓變換兩種不同PCB布局

必須遵守諸多標(biāo)準(zhǔn),如國(guó)際無(wú)線電干擾特別委員會(huì)(CISPR) 25標(biāo)準(zhǔn)。在很多情況下,如果制造商不符合標(biāo)準(zhǔn),汽車制造商就無(wú)法接受相應(yīng)的設(shè)計(jì)。 因此,對(duì)于DC/DC降壓轉(zhuǎn)換器的EMI性能提升PCB布局
2019-03-13 06:45:01

如何使高分辨率A/D轉(zhuǎn)換器獲得更高性能

A/D轉(zhuǎn)換器最常見的誤差有哪些?如何使高分辨率A/D轉(zhuǎn)換器獲得更高性能?
2021-04-22 06:08:22

如何利用電感式轉(zhuǎn)換器提升LED轉(zhuǎn)換效率?

有沒有人解答該如何利用電感式轉(zhuǎn)換器提升LED轉(zhuǎn)換效率?
2021-04-12 07:14:58

如何采用PGA的SAR轉(zhuǎn)換器實(shí)現(xiàn)125 dB的動(dòng)態(tài)范圍

采用PGA的SAR轉(zhuǎn)換器實(shí)現(xiàn)125 dB的動(dòng)態(tài)范圍
2021-01-15 07:12:44

實(shí)裝PCB布局與總結(jié)

本文將介紹該設(shè)計(jì)案例的PCB布局示例,并進(jìn)行整體總結(jié),以結(jié)束AC/DC轉(zhuǎn)換器 設(shè)計(jì)篇 “AC/DC 非隔離型降壓轉(zhuǎn)換器的設(shè)計(jì)案例”。PCB布局示例在其他章節(jié)中也提到過(guò),無(wú)論是AC/DC還是DC
2018-12-03 14:24:36

開關(guān)轉(zhuǎn)換器的相位提升電路

不足的情形發(fā)生。此外,當(dāng)轉(zhuǎn)換器的工作環(huán)境發(fā)生變化,如溫度、濕度、或零件老化等,都可能造成系統(tǒng)穩(wěn)定度的改變,甚至導(dǎo)致電源系統(tǒng)不穩(wěn)定。本文探討因應(yīng)原設(shè)計(jì)參數(shù)改變而采用相位提升電路,以改善系統(tǒng)穩(wěn)定度,并以立
2019-07-23 07:27:19

時(shí)鐘發(fā)生的相位噪聲和抖動(dòng)性能為什么會(huì)影響到數(shù)據(jù)轉(zhuǎn)換器

系統(tǒng)設(shè)計(jì)師通常側(cè)重于為應(yīng)用選擇最合適的數(shù)據(jù)轉(zhuǎn)換器,在向數(shù)據(jù)轉(zhuǎn)換器提供輸入的時(shí)鐘發(fā)生器件的選擇上往往少有考慮。然而,如果不慎重考慮時(shí)鐘發(fā)生的相位噪聲和抖動(dòng)性能,數(shù)據(jù)轉(zhuǎn)換器動(dòng)態(tài)范圍和線性度性能可能受到嚴(yán)重的影響。
2019-07-30 07:57:42

時(shí)鐘的重要性,如何正確設(shè)計(jì)高性能轉(zhuǎn)換器

的主要缺點(diǎn)是,您放棄了實(shí)現(xiàn)dc、地震、音頻和更高帶寬應(yīng) 用的絕對(duì)最高可能性能所需的自定義和優(yōu)化。在急于重用和完 成設(shè)計(jì)的過(guò)程中,往往會(huì)犧牲精確性能。其容易忽略和忽視 的一個(gè)主要方面是時(shí)鐘。在本文中,我們將討論時(shí)鐘的重要性, 并為正確設(shè)計(jì)高性能轉(zhuǎn)換器提供指導(dǎo)。
2021-01-27 07:27:36

求大神詳細(xì)介紹關(guān)于優(yōu)化電源模塊性能PCB布局技術(shù)

本文從電源PCB布局出發(fā),介紹了優(yōu)化SIMPLE SWITCHER電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)。
2021-04-25 06:38:31

混合信號(hào)PCB的分區(qū)設(shè)計(jì)優(yōu)化混合信號(hào)電路性能

的過(guò)程,設(shè)計(jì)過(guò)程要注意以下幾點(diǎn): 1.將PCB分區(qū)為獨(dú)立的模擬部分和數(shù)字部分。 2.合適的元器件布局。 3.A/D轉(zhuǎn)換器跨分區(qū)放置。 4.不要對(duì)地進(jìn)行分割。在電路板的模擬部分和數(shù)字部分下面敷設(shè)統(tǒng)一
2018-08-28 15:28:43

用于實(shí)現(xiàn)最低失真和噪聲的功耗優(yōu)化的 16 位 1MSPS 數(shù)據(jù)采集系統(tǒng)參考設(shè)計(jì)包含原理PCB 布局和測(cè)量結(jié)果

描述此 TI 驗(yàn)證設(shè)計(jì)實(shí)現(xiàn)了高精度 16 位 1MSPS 數(shù)據(jù)采集系統(tǒng),適用于需要前端具有超低失真和超低噪聲的數(shù)字音頻等應(yīng)用。該電路采用高性能逐次逼近型寄存模數(shù)轉(zhuǎn)換器 (SAR ADC) 并經(jīng)
2018-08-03 07:28:48

電壓參考如何改變轉(zhuǎn)換器性能

您可能會(huì)把模數(shù)轉(zhuǎn)換器或者數(shù)模轉(zhuǎn)換器缺少輸出穩(wěn)定性的原因歸咎于實(shí)際轉(zhuǎn)換器本身。但其實(shí)轉(zhuǎn)換器周圍的電壓參考才是真正的罪魁禍?zhǔn)住N覀儗@電壓參考如何改變轉(zhuǎn)換器性能作介紹?
2021-04-07 06:33:14

電流模式的buck轉(zhuǎn)換器

目的:檢查功率轉(zhuǎn)換器的調(diào)整速度、穩(wěn)定性問題、負(fù)載調(diào)整特性、占空比極限、PCB布局問題,輸入電壓的穩(wěn)定性當(dāng)負(fù)載瞬變的時(shí)候,轉(zhuǎn)換器要求具有良好的階躍響應(yīng)特性對(duì)于電流模式的buck轉(zhuǎn)換器,當(dāng)負(fù)載階躍變化時(shí),會(huì)因?yàn)殡姼泻碗娮鐴SR和ESL的存在...
2021-11-16 08:06:13

電源模塊性能對(duì)PCB布局技術(shù)要求

孔以1~1.5mm的間距形成陣列。結(jié)論SIMPLE SWITCHER電源模塊為應(yīng)對(duì)復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來(lái)優(yōu)化模塊性能。
2010-12-15 09:34:59

電源模塊性能PCB布局技術(shù)方案

/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來(lái)優(yōu)化模塊性能。
2010-12-29 15:57:12

電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)

散熱孔,并使這些散熱孔以1~1.5mm的間距形成陣列。結(jié)論 SIMPLE SWITCHER電源模塊為應(yīng)對(duì)復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除
2022-05-09 14:46:49

電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)

,并使這些散熱孔以1~1.5mm的間距形成陣列。結(jié)論 SIMPLE SWITCHER電源模塊為應(yīng)對(duì)復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來(lái)優(yōu)化模塊性能。
2022-06-27 09:16:35

電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)

~1.5mm的間距形成陣列。結(jié)論SIMPLE SWITCHER電源模塊為應(yīng)對(duì)復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來(lái)優(yōu)化模塊性能。
2020-12-14 09:24:21

相移時(shí)延如何改善DC/DC轉(zhuǎn)換器性能?

”,亦即電源的開關(guān)DC/DC轉(zhuǎn)換器之間的頻差。如果拍頻在100Hz到23kHz之間,則音頻放大器很可能會(huì)檢測(cè)到它們,并擾亂系統(tǒng)性能。文探討了如何使用相移時(shí)延技術(shù)來(lái)對(duì)主/從(Master/Slave
2018-12-03 11:26:43

碼域翻轉(zhuǎn)干擾所帶來(lái)的問題及PCB優(yōu)化解決方案介紹

ADS58H40 是一款由德州儀器(TI)推出的四通道、11/14 比特、采樣 250MSPS、接收 90MHz帶寬的高性能高速模數(shù)轉(zhuǎn)換器。它同時(shí)具有用于反饋的 125MHz 帶寬的 Burst
2019-06-21 06:25:16

移相控制下的雙路輸出降壓變換不同的PCB布局對(duì)比分析

委員會(huì)(CISPR) 25標(biāo)準(zhǔn)。在很多情況下,如果制造商不符合標(biāo)準(zhǔn),汽車制造商就無(wú)法接受相應(yīng)的設(shè)計(jì)。因此,對(duì)于DC/DC降壓轉(zhuǎn)換器的EMI性能提升,PCB布局至關(guān)重要。而要獲得良好的EMI性能,優(yōu)化
2020-10-21 12:46:33

移相控制的多路輸出降壓變換如何提升EMI性能PCB布局優(yōu)化

電源設(shè)計(jì)工程師通常在汽車系統(tǒng)中使用一些DC/DC降壓變換來(lái)為多個(gè)電源軌提供支持。然而,在選擇這些類型的降壓轉(zhuǎn)換器時(shí)需要考慮幾個(gè)因素。例如,一方面需要為汽車信息娛樂系統(tǒng)/主機(jī)單元選擇高開關(guān)頻率DC
2022-11-10 06:38:39

能夠?qū)崿F(xiàn)最佳工作性能的高級(jí)數(shù)據(jù)轉(zhuǎn)換器和集成解決方案

用于醫(yī)療成像系統(tǒng)的高性能數(shù)據(jù)轉(zhuǎn)換器
2021-01-29 06:31:44

請(qǐng)問一下Arm Cortex-M85性能提升是對(duì)總線進(jìn)行了優(yōu)化嗎?

請(qǐng)問一下Arm Cortex-M85性能提升是對(duì)總線進(jìn)行了優(yōu)化嗎?
2022-09-21 11:28:05

請(qǐng)問如何通過(guò)物理綜合與優(yōu)化提升設(shè)計(jì)性能

物理綜合與優(yōu)化的優(yōu)點(diǎn)是什么?物理綜合與優(yōu)化有哪些流程?物理綜合與優(yōu)化有哪些示例?為什么要通過(guò)物理綜合與優(yōu)化提升設(shè)計(jì)性能?如何通過(guò)物理綜合與優(yōu)化提升設(shè)計(jì)性能?
2021-04-14 06:52:32

誰(shuí)來(lái)講解一下高級(jí)動(dòng)態(tài)性能模數(shù)轉(zhuǎn)換器是什么?

高級(jí)動(dòng)態(tài)性能模數(shù)轉(zhuǎn)換器是什么?有什么優(yōu)勢(shì)?LVDS為什么是最適用于高速的數(shù)據(jù)轉(zhuǎn)換器
2021-04-12 06:54:47

負(fù)載點(diǎn)DC-DC轉(zhuǎn)換器解決電壓精度、效率和延遲問題

點(diǎn)轉(zhuǎn)換器是一種電源DC-DC轉(zhuǎn)換器,放置在盡可能靠近負(fù)載的位置,以接近電源。因POL轉(zhuǎn)換器受益的應(yīng)用包括高性能CPU、SoC和FPGA——它們對(duì)功率級(jí)的要求都越來(lái)越高。例如,在汽車應(yīng)用中,高級(jí)駕駛員
2021-12-14 07:00:00

連接過(guò)孔的性能提升

可選、替代,將過(guò)孔反焊盤擴(kuò)大、非功能焊盤去掉、換成low Dk/low Df的板材等優(yōu)化措施均已用上,而我們的系統(tǒng)裕量依然不夠,仍需處處摳裕量,任何地方的提升都對(duì)系統(tǒng)性能有著不可忽視的作用時(shí),是否有方法進(jìn)一步提升連接過(guò)孔處的性能?
2019-07-23 06:43:22

采用LM5001和LM2831Y的傳導(dǎo)EMI優(yōu)化8W SEPIC轉(zhuǎn)換器參考設(shè)計(jì)

) 輸出。此器件采用小型尺寸,是使用升壓轉(zhuǎn)換器和線性穩(wěn)壓的價(jià)格低廉且更高效的解決方案。在汽車儀表盤中,整個(gè)電源樹設(shè)計(jì)只使用一個(gè)差分濾波。特性 實(shí)現(xiàn)更佳 EMI 性能優(yōu)化布局適用于所有開關(guān)轉(zhuǎn)換器
2022-09-22 06:26:00

性能轉(zhuǎn)換器怎么設(shè)計(jì)?

現(xiàn)代 SA R和 ∑-Δ 型模數(shù)轉(zhuǎn)換器 (ADC) 的主要優(yōu)勢(shì)之一是在設(shè)計(jì)中考慮了易用性,不僅簡(jiǎn)化了系統(tǒng)設(shè)計(jì)人員的工作,而且允許對(duì)多代各種應(yīng)用重復(fù)使用單個(gè)參考設(shè)計(jì)。在很多情況下,您可以構(gòu)建一個(gè)參考設(shè)計(jì)長(zhǎng)時(shí)間用于不同的應(yīng)用。精密測(cè)量系統(tǒng)的硬件保持不變,而軟件實(shí)現(xiàn)適應(yīng)不同系統(tǒng)的需要。
2019-08-01 08:03:55

高密度DC/DC轉(zhuǎn)換器PCB布局第一部分

直流/直流(DC/DC)轉(zhuǎn)換器印刷電路板(PCB布局最引人矚目的范例涉及功率級(jí)組件的放置和布線。精心的布局同時(shí)提高開關(guān)性能、降低組件溫度并減少電磁干擾(EMI)信號(hào)。請(qǐng)細(xì)看圖1中的功率級(jí)布局和原理圖
2018-09-05 15:24:36

高密度DC/DC轉(zhuǎn)換器PCB布局第二部分

具有戰(zhàn)略意義的位置靈活部署轉(zhuǎn)換器的能力也很重要 —— 以大電流負(fù)載點(diǎn)(POL)模塊為例,處于鄰近負(fù)載的最佳位置降低導(dǎo)通壓降并改善負(fù)載瞬態(tài)性能。 請(qǐng)細(xì)看圖1中外形微縮的降壓型轉(zhuǎn)換器的功率級(jí)布局。作為一
2018-09-05 15:24:34

高速轉(zhuǎn)換器重要PCB布局布線規(guī)則

問:使用高速轉(zhuǎn)換器時(shí),有哪些重要的PCB布局布線規(guī)則?  答:為了確保設(shè)計(jì)性能達(dá)到數(shù)據(jù)手冊(cè)的技術(shù)規(guī)格,必須遵守一些指導(dǎo)原則。首先,有一個(gè)常見的問題:“AGND和DGND接地層應(yīng)當(dāng)分離嗎?”簡(jiǎn)單回答
2018-09-12 15:04:59

DC總線轉(zhuǎn)換器提升了系統(tǒng)電源管理性能

DC總線轉(zhuǎn)換器提升了系統(tǒng)電源管理性能 一個(gè)采用全新直流總線轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)的優(yōu)化芯片組,可在效率高于96%的情況下提供150W的輸出功率;該拓?fù)浣Y(jié)構(gòu)針對(duì)兩級(jí)
2010-03-19 12:00:1338

優(yōu)化電源模塊的最佳PCB布局方法

  本文從電源PCB布局出發(fā),介紹了優(yōu)化SIMPLE SWITCHER電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)。   在
2010-11-29 09:04:242117

PCB布局技術(shù)使電源模塊性能優(yōu)化

PCB布局技術(shù)使電源模塊性能優(yōu)化 簡(jiǎn)單易用的新一代電源模塊為復(fù)雜的電源設(shè)計(jì)、以及通常與 DC-DC 轉(zhuǎn)換器有關(guān)的印刷電路板(PCB)布局提供了一種替代方案。盡管如此,在設(shè)計(jì)和布局這些將電感器和單片同步穩(wěn)壓器集成在一個(gè)電源組中的電源模塊時(shí)仍有不少設(shè)計(jì)工作
2011-01-25 16:11:4560

實(shí)現(xiàn)降壓型轉(zhuǎn)換器出色 PCB 布局的五個(gè)步驟經(jīng)驗(yàn)分享

實(shí)現(xiàn)降壓型轉(zhuǎn)換器出色 PCB 布局的五個(gè)步驟
2018-04-27 10:06:460

寬帶運(yùn)算放大器優(yōu)化高速14位性能差分驅(qū)動(dòng)器PCB布局技術(shù)的概述

一旦為給定的應(yīng)用選擇了模數(shù)轉(zhuǎn)換器(ADC)和驅(qū)動(dòng)器/接口,實(shí)現(xiàn)優(yōu)異性能的下一步就是鋪設(shè)將支持應(yīng)用的印刷電路板(PCB)。該應(yīng)用報(bào)告描述了使用寬帶運(yùn)算放大器優(yōu)化高速、14位性能、差分驅(qū)動(dòng)器PCB布局的幾種技術(shù)。
2018-05-15 10:50:3111

DC / DC轉(zhuǎn)換器怎樣為PCB布局(1)

任何DC/DC電源轉(zhuǎn)換器的精心系統(tǒng)設(shè)計(jì)的基礎(chǔ)是精心規(guī)劃和精心執(zhí)行的印刷電路板(PCB布局。
2019-08-14 02:27:002383

升壓型DC/DC轉(zhuǎn)換器PCB布局中“接地”探討

本文將探討升壓型DC/DC轉(zhuǎn)換器PCB布局中“接地”相關(guān)的內(nèi)容。經(jīng)常聽到“接地很重要”、“需要加強(qiáng)接地設(shè)計(jì)”等說(shuō)法。實(shí)際上,在升壓型DC/DC轉(zhuǎn)換器PCB布局中,沒有充分考慮接地、背離基本規(guī)則
2021-05-19 09:21:442318

基于移相控制的多路輸出降壓變換器提升EMI性能PCB布局優(yōu)化

基于移相控制的多路輸出降壓變換器提升EMI性能PCB布局優(yōu)化
2022-11-01 08:26:103

DC/DC轉(zhuǎn)換器的高密度印刷電路板(PCB布局,第2部分

DC/DC轉(zhuǎn)換器的高密度印刷電路板(PCB布局,第2部分
2022-11-03 08:04:444

DC/DC轉(zhuǎn)換器的高密度印刷電路板(PCB布局,第1部分

DC/DC轉(zhuǎn)換器的高密度印刷電路板(PCB布局,第1部分
2022-11-03 08:04:443

Fly-Buck 轉(zhuǎn)換器 PCB 布局技巧

Fly-Buck 轉(zhuǎn)換器 PCB 布局技巧
2022-11-04 09:52:380

反饋路徑的布線——升壓型DC/DC轉(zhuǎn)換器PCB布局

本文將介紹升壓型DC/DC轉(zhuǎn)換器PCB布局中的反饋路徑的布線。
2023-02-06 09:21:101028

非隔離型降壓轉(zhuǎn)換器的設(shè)計(jì)案例-實(shí)裝PCB布局與總結(jié)

本文將介紹該設(shè)計(jì)案例的PCB布局示例,并進(jìn)行整體總結(jié),以結(jié)束AC/DC轉(zhuǎn)換器 設(shè)計(jì)篇 “AC/DC 非隔離型降壓轉(zhuǎn)換器的設(shè)計(jì)案例”。
2023-02-17 09:25:05660

使用SiC-MOSFET的隔離型準(zhǔn)諧振轉(zhuǎn)換器的設(shè)計(jì)案例-PCB布局示例

截至上一篇文章,結(jié)束了部件選型相關(guān)的內(nèi)容,本文將對(duì)此前介紹過(guò)的PCB電路板布局示例進(jìn)行總結(jié)。使用SiC-MOSFET的隔離型準(zhǔn)諧振轉(zhuǎn)換器PCB布局示例
2023-02-17 09:25:07397

DC/DC轉(zhuǎn)換器的基板布局-DC/DC轉(zhuǎn)換器PCB布局概述

DC/DC轉(zhuǎn)換器:設(shè)計(jì)篇,開始新的篇章“DC/DC轉(zhuǎn)換器PCB布局”。關(guān)于DC/DC轉(zhuǎn)換器的設(shè)計(jì),電路結(jié)構(gòu)和元器件選型當(dāng)然非常重要,PCB布局同樣很重要。
2023-02-23 09:30:58972

DC/DC轉(zhuǎn)換器的基板布局-小結(jié)

在DC/DC轉(zhuǎn)換器設(shè)計(jì)篇“DC/DC轉(zhuǎn)換器PCB布局”中,曾對(duì)以下項(xiàng)目進(jìn)行了介紹。本文將匯總各項(xiàng)目的關(guān)鍵詞作為總結(jié)。首先,在“PCB布局的要點(diǎn)”中介紹了整體通用的要點(diǎn)。這些是最全面清晰的要點(diǎn)總結(jié),因此在這里也先列出這些要點(diǎn)。
2023-02-22 18:17:19628

升壓型DC/DC轉(zhuǎn)換器PCB布局-PCB布局設(shè)計(jì)的重要性

開關(guān)電源的PCB布局與電路設(shè)計(jì)同樣重要在設(shè)計(jì)開關(guān)電源時(shí),實(shí)裝升壓型DC/DC轉(zhuǎn)換器PCB板的布局設(shè)計(jì)與電路設(shè)計(jì)同樣重要。如果升壓型DC/DC轉(zhuǎn)換器PCB布局不合理,則可能無(wú)法發(fā)揮出電源IC本來(lái)的性能,甚至可能無(wú)法正常運(yùn)行。
2023-02-22 16:41:08763

升壓型DC/DC轉(zhuǎn)換器PCB布局-升壓型DC/DC轉(zhuǎn)換器的電流路徑

升壓型DC/DC轉(zhuǎn)換器的電流路徑不僅局限于升壓型DC/DC轉(zhuǎn)換器,在很多產(chǎn)品的PCB布局設(shè)計(jì)中,了解其電路的電流路徑和特性都是非常重要的。在進(jìn)入具體的布局講解之前,我們先來(lái)看一下升壓型DC/DC轉(zhuǎn)換器的電流路徑。
2023-02-22 16:41:08906

升壓型DC/DC轉(zhuǎn)換器PCB布局-安裝PCB布局的步驟

上一篇文章中,我們介紹了在進(jìn)行升壓型DC/DC轉(zhuǎn)換器的安裝PCB布局時(shí)的基本思路,即與開關(guān)相關(guān)的電流路徑。本文將在分別進(jìn)行升壓型DC/DC轉(zhuǎn)換器PCB布局的解說(shuō)之前,先介紹升壓型DC/DC轉(zhuǎn)換器PCB布局的整體步驟和要點(diǎn)。
2023-02-22 18:13:421198

升壓型DC/DC轉(zhuǎn)換器PCB布局-輸入電容器的配置

從本文開始,我們將對(duì)升壓型DC/DC轉(zhuǎn)換器PCB布局的各個(gè)元器件的配置及其要點(diǎn)進(jìn)行說(shuō)明。上一篇文章所述的升壓型DC/DC轉(zhuǎn)換器PCB布局的步驟是決定元器件配置的順序,如果升壓型DC/DC轉(zhuǎn)換器PCB布局基本可以按照這個(gè)順序進(jìn)行設(shè)計(jì),則可以提高設(shè)計(jì)效率。
2023-02-22 16:41:08652

升壓型DC/DC轉(zhuǎn)換器PCB布局-散熱孔的配置

到目前為止,我們已經(jīng)介紹了升壓型DC/DC轉(zhuǎn)換器PCB布局中的輸入電容器、輸出電容器和續(xù)流二極管以及電感的配置。本文將介紹升壓型DC/DC轉(zhuǎn)換器PCB布局的散熱孔的配置,升壓型DC/DC轉(zhuǎn)換器PCB布局的散熱孔的配置在散熱中起著非常重要的作用。
2023-02-22 16:41:09975

升壓型DC/DC轉(zhuǎn)換器PCB布局-接地

本文將探討升壓型DC/DC轉(zhuǎn)換器PCB布局中“接地”相關(guān)的內(nèi)容。經(jīng)常聽到“接地很重要”、“需要加強(qiáng)接地設(shè)計(jì)”等說(shuō)法。實(shí)際上,在升壓型DC/DC轉(zhuǎn)換器PCB布局中,沒有充分考慮接地、背離基本規(guī)則的接地設(shè)計(jì)是產(chǎn)生問題的根源。
2023-02-22 16:48:38725

升壓型DC/DC轉(zhuǎn)換器PCB布局-銅箔的電阻和電感

本文將介紹升壓型DC/DC轉(zhuǎn)換器PCB布局中銅箔的電阻和電感。另外,本文內(nèi)容將不局限于升壓型DC/DC轉(zhuǎn)換器,而是會(huì)涉及到PCB布局整體,因此可作為電路板布局的基礎(chǔ)內(nèi)容來(lái)了解。
2023-02-22 16:41:10774

DC-DC降壓轉(zhuǎn)換器PCB布局的技巧

了解DC-DC降壓轉(zhuǎn)換器電路的最佳布局規(guī)范。在實(shí)現(xiàn)DC-DC降壓轉(zhuǎn)換器時(shí),電路布局與設(shè)計(jì)同樣重要。布局不良會(huì)嚴(yán)重降低設(shè)計(jì)效果。本文將介紹一些最佳布局實(shí)踐。
2023-06-19 18:17:311112

升壓型DC/DC轉(zhuǎn)換器PCB布局中的反饋路徑是如何布線的?

正如在“升壓型DC/DC轉(zhuǎn)換器的電流路徑”中所提到的,升壓型DC/DC轉(zhuǎn)換器PCB布局中的電路布線會(huì)有兩種路徑,一種是會(huì)流過(guò)與輸入和輸出相關(guān)的大電流,而另一種只會(huì)流過(guò)用來(lái)實(shí)現(xiàn)控制的小電流。
2023-08-23 17:06:26370

升壓型DC/DC轉(zhuǎn)換器PCB布局中接地設(shè)計(jì)

本文將探討升壓型DC/DC轉(zhuǎn)換器PCB布局中“接地”相關(guān)的內(nèi)容。經(jīng)常聽到“接地很重要”、“需要加強(qiáng)接地設(shè)計(jì)”等說(shuō)法。實(shí)際上,在升壓型DC/DC轉(zhuǎn)換器PCB布局中,沒有充分考慮接地、背離基本規(guī)則
2023-09-05 09:07:44498

pcb元件布局調(diào)整時(shí)應(yīng)注意哪些問題

電子產(chǎn)品來(lái)說(shuō),好的PCB設(shè)計(jì)可以提升整機(jī)的性能,因此PCB設(shè)計(jì)器件布局優(yōu)化是非常重要的。 PCB設(shè)計(jì)器件布局提升整機(jī)的性能 首先,PCB設(shè)計(jì)師應(yīng)該考慮在布局中實(shí)現(xiàn)最短的電路路徑。電路路徑愈短,電流的流動(dòng)愈流暢,從而可以減少噪音和電磁干擾。此外,電路路徑的優(yōu)化還可以減少電阻
2024-03-20 09:43:3188

已全部加載完成

主站蜘蛛池模板: 日本精品久久久久中文字幕| 色在线视频亚洲欧美| 亚洲欧美中文日韩视频| 凹凸精品视频分类视频| 久见久热 这里只有精品| 日韩欧美一区二区三区免费观看| 最近免费中文字幕MV在线视频3 | 久久4k岛国高清一区二区| 色翁荡熄月月| AV97最新无码喷水叫床| 簧片在线免费观看| 我要色导航| 成人区精品一区二区不卡AV免费| 免费A级毛片无码鲁大师| 日本久久久WWW成人免费毛片丨| 1区2区3区4区产品不卡码网站| 国产中文字幕乱码一区| 忘忧草秋观看未满十八| 大香伊人久久精品一区二区| 欧美人与动牲交A精品| 综合伊人久久| 久久久精品久久| 夜夜草导航| 花蝴蝶免费观看影视| 亚洲1区2区3区精华液| 国产成人精选免费视频| 日日射日日操| 纯肉高H放荡受BL文库| 青青草国产精品久久| AAA级精品无码久久久国片| 蜜臀AV精品一区二区三区| 中文字幕s级优女区| 久久婷婷久久一区二区三区 | 大稥焦伊人一本dao| 热久久国产欧美一区二区精品| 99久久精品费精品国产一区二| 麻豆国产自制在线观看| 亚洲不卡视频在线观看| 国产精品人妻在线观看| 晓雪老师我要进你里面好爽| 国产精品视频第一区二区三区|