在本系列的前幾篇文章中[1-7],我們介紹了基于安森美豐富的SiC功率模塊和其他功率器件開發的25 kW EV快充系統。
2022-06-29 11:30:505045 在很寬的范圍內實現對器件制造所需的p型和n型的控制。因此,SiC被認為是有望超越硅極限的功率器件材料。SiC具有多種多型(晶體多晶型),并且每種多型顯示不同的物理特性。對于功率器件,4H-SiC被認為是理想的,其單晶4英寸到6英寸之間的晶圓目前已量產。
2022-11-22 09:59:261373 SiC MOSFET器件的集成化、高頻化和高效化需求,對功率模塊封裝形式和工藝提出了更高的要求。本文中總結了近年來封裝形式的結構優化和技術創新,包括鍵合式功率模塊的金屬鍵合線長度、寬度和并聯
2023-01-07 10:24:371062 為滿足快速發展的電動汽車行業對高功率密度 SiC 功率模塊的需求,進行了 1 200 V/500 A 高功率密度三相 全橋 SiC 功率模塊設計與開發,提出了一種基于多疊層直接鍵合銅單元的功率模塊封裝方法來并聯更多的芯片。
2024-03-13 10:34:03377 半導體器件具有導通電阻小、阻斷電壓高、耐高溫耐高壓等優點。隨著SiC基半導體工藝的成熟,SiC成為工作于較高環境溫度和較大功率場合下的--寬禁帶半導體材料。近年來隨著電力電子技術在電動汽車、風力發電
2019-10-24 14:25:15
802.11n的技術核心是什么?802.11n技術關鍵點是什么?
2021-05-21 07:07:52
基于碳化硅(SiC)、氮化鎵(GaN)等寬帶隙(WBG)半導體的新型高效率、超快速功率轉換器已經開始在各種創新市場和應用領域攻城略地——這類應用包括太陽能光伏逆變器、能源存儲、車輛電氣化(如充電器
2019-07-31 06:16:52
晶體生長和器件加工技術的額外動力。在20世紀80年代后期,世界各地正在進行大量努力,以提高SiC襯底和六方SiC外延的質量 - 垂直SiC功率器件所需 - 從日本的京都大學和AIST等機構到俄羅斯
2023-02-27 13:48:12
家公司已經建立了SiC技術作為其功率器件生產的基礎。此外,幾家領先的功率模塊和功率逆變器制造商已為其未來基于SiC的產品的路線圖奠定了基礎。碳化硅(SiC)MOSFET即將取代硅功率開關;性能和可靠性
2019-07-30 15:15:17
SiC-DMOS的特性現狀是用橢圓圍起來的范圍。通過未來的發展,性能有望進一步提升。從下一篇開始,將單獨介紹與SiC-MOSFET的比較。關鍵要點:?功率晶體管的特征因材料和結構而異。?在特性方面各有優缺點,但SiC-MOSFET在整體上具有優異的特性。< 相關產品信息 >MOSFETSiC-DMOS
2018-11-30 11:35:30
的交流/直流雙向轉換器,其中ADSP-CM419F的軟件在正確控制 SiC/GaN功率開關方面起著關鍵作用。
2018-10-30 11:48:08
基于SiC/GaN的新一代高密度功率轉換器SiC/GaN具有的優勢
2021-03-10 08:26:03
的不是全SiC功率模塊特有的評估事項,而是單個SiC-MOSFET的構成中也同樣需要探討的現象。在分立結構的設計中,該信息也非常有用。“柵極誤導通”是指在高邊SiC-MOSFET+低邊
2018-11-30 11:31:17
1. SiC模塊的特征大電流功率模塊中廣泛采用的主要是由Si材料的IGBT和FRD組成的IGBT模塊。ROHM在世界上首次開始出售搭載了SiC-MOSFET和SiC-SBD的功率模塊。由IGBT的尾
2019-03-25 06:20:09
。例如,SiC功率模塊的尺寸可達到僅為Si的1/10左右。關于“高速工作”,通過提高開關頻率,變壓器、線圈、電容器等周邊元件的體積可以更小。實際上有能做到原有1/10左右的例子。“高溫工作”是指容許在
2018-11-29 14:35:23
二極管的恢復損耗非常小。主要應用于工業機器電源、高效率功率調節器的逆變器或轉換器中。2. 標準化導通電阻SiC的絕緣擊穿場強是Si的10倍,所以能夠以低阻抗、薄厚度的漂移層實現高耐壓。因此,在相同的耐壓值
2019-05-07 06:21:55
1. SiC模塊的特征大電流功率模塊中廣泛采用的主要是由Si材料的IGBT和FRD組成的IGBT模塊。ROHM在世界上首次開始出售搭載了SiC-MOSFET和SiC-SBD的功率模塊。由IGBT的尾
2019-05-06 09:15:52
載流子器件(肖特基勢壘二極管和MOSFET)去實現高耐壓,從而同時實現 "高耐壓"、"低導通電阻"、"高頻" 這三個特性。另外,帶隙較寬,是Si的3倍,因此SiC功率器件即使在高溫下也可以穩定工作。
2019-07-23 04:20:21
具有成本效益的大功率高溫半導體器件是應用于微電子技術的基本元件。SiC是寬帶隙半導體材料,與Si相比,它在應用中具有諸多優勢。由于具有較寬的帶隙,SiC器件的工作溫度可高達600℃,而Si器件
2018-09-11 16:12:04
WInSiC4AP的主要目標是什么?SiC技術在WInSiC4AP中有什么應用?
2021-07-15 07:18:06
在未來幾年投入使用SiC技術來應對汽車電子技術挑戰是ECSEL JU 的WInSiC4AP項目所要達到的目標之一。ECSEL JU和ESI協同為該項目提供資金支持,實現具有重大經濟和社會影響的優勢互補的研發活動。
2019-07-30 06:18:11
SBD串聯技術,實現6支器件串聯,研制了39 kV/100 A SiC SBD組件,并在24 kV換流閥功率模塊中得到應用。 圖1 ZPOC封裝示意圖 應用ZPOC封裝技術的模塊使用了焊接與壓接
2023-02-27 14:22:06
隨著現代技術的發展, 功率放大器已成為無線通信系統中一個不可或缺的部分, 特別是寬帶大功率產生技術已成為現代通信對抗的關鍵技術。作為第三代半導體材料碳化硅( SiC) , 具有寬禁帶、高熱導率、高
2019-08-12 06:59:10
與Si的比較開發背景SiC的優點SiC-SBD(肖特基勢壘二極管)與Si二極管比較采用示例SiC-MOSFET與各種功率MOSFET比較運用事例全SiC模塊模塊的構成開關損耗運用要點SiC是在熱、化學
2018-11-29 14:39:47
SiC-SBD的特征,下面將介紹一些其典型應用。主要是在電源系統應用中,將成為代替以往的Si二極管,解決當今的重要課題——系統效率提高與小型化的關鍵元器件之一。<應用例>PFC(功率因數改善)電路電機驅動器電路
2018-12-04 10:26:52
半導體的關鍵特性是能帶隙,能帶動電子進入導通狀態所需的能量。寬帶隙(WBG)可以實現更高功率,更高開關速度的晶體管,WBG器件包括氮化鎵(GaN)和碳化硅(SiC),以及其他半導體。 GaN和SiC
2022-08-12 09:42:07
基于SiC HEMT技術的GaN輸出功率> 250W預匹配的輸入阻抗極高的效率-高達80%在100ms,10%占空比脈沖條件下進行了100%RF測試IGN0450M250功率晶體管
2021-04-01 10:35:32
) MOSFET功率模塊的極低電感封裝 這款全新封裝專為用于公司SP6LI 產品系列 而開發,經設計提供適用于SiC MOSFET技術的2.9 nH雜散電感,同時實現高電流、高開關頻率以及高效率。美高森美將在德國
2018-10-23 16:22:24
,很高興能與APEX Microtechnology開展合作。ROHM作為SiC功率元器件的先進企業,能夠提供與柵極驅動器IC相結合的功率系統解決方案,并且已經在該領域取得了巨大的技術領先優勢。我們將與
2023-03-29 15:06:13
是PCB繪制中有些問題沒有注意。請問一下,TL6748f核心板+TL2515模塊的PCB繪制上有哪些需要注意的關鍵點?
2019-07-29 15:01:24
項目名稱:特種電源開發試用計劃:在I項目開發中,有一個關鍵電源,需要在有限空間,實現高壓、大電流脈沖輸出。對開關器件的開關特性和導通電阻都有嚴格要求。隨著SIC產品的技術成熟度越來越高,計劃把IGBT開關器件換成SIC器件。
2020-04-24 17:57:09
SiC模塊,對比相同充放電功率情況下SiC與MOSFET或者IGBT的溫升。預計成果:在性能滿足要求,價格可接受范圍內,后續適用到產品中
2020-04-24 18:09:35
項目名稱:全SiC MMC實驗平臺設計——功率子模塊驅動選型試用計劃:申請理由本人在電力電子領域有三年多的學習和開發經驗,曾設計過基于半橋級聯型拓撲的儲能系統,通過電力電子裝置實現電池單元的間接
2020-04-21 16:02:34
700VDC以上。另一方面,由于系統回路內雜散電感的存在,在功率器件開關時會在模塊主端子上產生尖峰電壓,因此在傳統的APS系統中不得已采用1.7kV的混合SiC模塊,該模塊由普通IGBT和SiC SBD組成
2017-05-10 11:32:57
前言
碳化硅(SiC)材料是功率半導體行業主要進步發展方向,用于制作功率器件,可顯著提高電能利用率。SiC器件的典型應用領域包括:新能源汽車、5G通訊、光伏發電、軌道交通、智能電網等現代工業領域,在
2023-10-07 10:12:26
和更快的切換速度與傳統的硅mosfet和絕緣柵雙極晶體管(igbt)相比,SiC mosfet柵極驅動在設計過程中必須仔細考慮需求。本應用程序說明涵蓋為SiC mosfet選擇柵極驅動IC時的關鍵參數。
2023-06-16 06:04:07
。設計挑戰然而,SiC MOSFET 技術可能是一把雙刃劍,在帶來改進的同時,也帶來了設計挑戰。在諸多挑戰中,工程師必須確保:以最優方式驅動 SiC MOSFET,最大限度降低傳導和開關損耗。最大
2017-12-18 13:58:36
元件來適應略微增加的開關頻率,但由于無功能量循環而增加傳導損耗[2]。因此,開關模式電源一直是向更高效率和高功率密度設計演進的關鍵驅動力。 基于 SiC 和 GaN 的功率半導體器件 碳化硅
2023-02-21 16:01:16
相較于硅,碳化硅(SiC)肖特基二極管采用全新的技術,提供更出色的開關性能和更高的可靠性。SiC無反向恢復電流,且具有不受溫度影響的開關特性和出色的散熱性能,因此被視為下一代功率半導體。安森美半導體
2018-10-29 08:51:19
相較于硅,碳化硅(SiC)肖特基二極管采用全新的技術,提供更出色的開關性能和更高的可靠性。SiC無反向恢復電流,且具有不受溫度影響的開關特性和出色的散熱性能,因此被視為下一代功率半導體。
2020-07-30 07:14:58
功率模塊具體是什么樣的產品,都有哪些機型。之后計劃依次介紹其特點、性能、應用案例和使用方法。何謂全SiC功率模塊ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全
2018-11-27 16:38:04
ROHM為參戰2017年12月2日開幕的電動汽車全球頂級賽事“FIAFormula E錦標賽2017-2018(第4賽季)”的文圖瑞Formula E車隊提供全SiC功率模塊。ROHM在上個賽季(第
2018-12-04 10:24:29
SiC-MOSFET的量產。SiC功率模塊已經采用了這種溝槽結構的MOSFET,使開關損耗在以往SiC功率模塊的基礎上進一步得以降低。右圖是基于技術規格書的規格值,對1200V/180A的IGBT模塊、采用第二代
2018-11-27 16:37:30
SiC功率模塊的柵極驅動,可實現更低損耗的清潔運行。關鍵要點:?“柵極誤導通”的抑制方法有三種:①使關斷時的Vgs為負電壓,②增加外置CGS,③增加米勒鉗位MOSFET。?通過優化全SiC功率模塊的柵極驅動,可實現更低損耗的清潔運行。
2018-11-27 16:41:26
相較于硅,碳化硅(SiC)肖特基二極管采用全新的技術,提供更出色的開關性能和更高的可靠性。SiC無反向恢復電流,且具有不受溫度影響的開關特性和出色的散熱性能,因此被視為下一代功率半導體。
2019-07-25 07:51:59
設計方面,SiC功率模塊被認為是關鍵使能技術。 為了提高功率密度,通常的做法是設計更高開關頻率的功率轉換器。 DC/DC 轉換器和應用簡介 在許多應用中,較高的開關頻率會導致濾波器更小,電感和電容值
2023-02-20 15:32:06
部分及其評估而進行調整,是以非常高的速度進行高電壓和大電流切換的關鍵。尤其在電路設計的初步評估階段,使用評估板等工具可使開發工作順利進行。關鍵要點:?使用專用柵極驅動器和緩沖模塊,可顯著抑制浪涌和振鈴。?在損耗方面,Eon增加,Eoff減少。按總損耗(Eon + Eoff)來比較,當前損耗減少。
2018-11-27 16:36:43
ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全SiC”功率模塊量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低
2018-12-04 10:14:32
問題的關鍵在于找出適宜高溫工作的連接材料,匹配封裝中不同材料的熱性能。此外,多功能集成封裝技術以及先進的散熱技術在提升功率密度等方面也起著關鍵作用。本文重點就低雜散電感封裝、高溫封裝以及多功能集成封裝 3
2023-02-22 16:06:08
手機在向雙模/多模發展的同時集成了越來越多的RF技術。手機射頻模塊有哪些基本構成?它們又將如何集成?RF收發器,功率放大器,天線開關模塊,前端模塊,雙工器,SAW濾波器……跟著本文,來一一認識手機射頻技術和射頻模塊的關鍵元件們吧!
2019-08-12 06:44:47
手機在向雙模/多模發展的同時集成了越來越多的RF技術。手機射頻模塊有哪些基本構成?它們又將如何集成?RF收發器,功率放大器,天線開關模塊,前端模塊,雙工器,SAW濾波器……跟著本文,來一一認識手機射頻技術和射頻模塊的關鍵元件們吧!
2019-08-26 07:15:19
1. SiC模塊的特征大電流功率模塊中廣泛采用的主要是由Si材料的IGBT和FRD組成的IGBT模塊。ROHM在世界上首次開始出售搭載了SiC-MOSFET和SiC-SBD的功率模塊。由IGBT的尾
2019-03-12 03:43:18
,并提供驅動功率開關柵極所需的驅動信號。在隔離系統中,它們還可實現隔離,將系統帶電側的高電壓信號與在安全側的用戶和敏感低電壓電路分離。為了充分利用GaN/SiC技術能夠提供更高開關頻率的功能,柵極
2018-10-16 21:19:44
,并提供驅動功率開關柵極所需的驅動信號。在隔離系統中,它們還可實現隔離,將系統帶電側的高電壓信號與在安全側的用戶和敏感低電壓電路分離。為了充分利用GaN/SiC技術能夠提供更高開關頻率的功能,柵極
2018-10-16 06:20:46
,并提供驅動功率開關柵極所需的驅動信號。在隔離系統中,它們還可實現隔離,將系統帶電側的高電壓信號與在安全側的用戶和敏感低電壓電路分離。為了充分利用GaN/SiC技術能夠提供更高開關頻率的功能,柵極驅動器
2018-10-24 09:47:32
。但是,SiC器件需要對其關鍵規格和驅動要求有新的了解才能充分發揮其優勢。本文概述了EV和HEV的功率要求,解釋了為什么基于SiC的功率器件非常適合此功能,并闡明了其輔助器件驅動器的功能。在簡要討論了
2019-08-11 15:46:45
`①未來發展導向之Sic功率元器件“功率元器件”或“功率半導體”已逐漸步入大眾生活,以大功率低損耗為目的二極管和晶體管等分立(分立半導體)元器件備受矚目。在科技發展道路上的,“小型化”和“節能化
2017-07-22 14:12:43
,一直被視為“理想器件”而備受期待。然而,相對以往的Si材質器件,SiC功率器件在性能與成本間的平衡以及其對高工藝的需求,將成為SiC功率器件能否真正普及的關鍵。近年來,隨著國內多品牌的進入,SiC技術
2019-09-17 09:05:05
的快速充電器等的功率因數校正電路(PFC電路)和整流橋電路中。2. SiC-SBD的正向特性SiC-SBD的開啟電壓與Si-FRD相同,小于1V。開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度
2019-05-07 06:21:51
,LeapersSemiconductor使用其專利的電弧鍵合?技術(圖2)。 與許多汽車級功率半導體制造商使用的傳統鋁引線鍵合技術不同,電弧鍵合?專利芯片表面連接技術可確保滿足汽車應用要求的SiC模塊的可靠性,同時顯著降低寄生電阻
2023-02-20 16:26:24
功率開關技術也是如此,特別是用SiC和GaN制作的寬帶隙器件。SiC已經從5年前的商業起步躍升到今天的第三代,價格已與硅開關相當,特別是在考慮到連鎖效益的情況下。 隨著電動汽車、可再生能源和5G等
2023-02-27 14:28:47
在未來幾年投入使用SiC技術來應對汽車電子技術挑戰是ECSEL JU的WInSiC4AP專案所要達成的目標之一。ECSEL JU和ESI攜手為該專案提供資金支援,實現具有重大經濟和社會影響的優勢互補
2019-06-27 04:20:26
ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全SiC”功率模塊量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低
2018-12-04 10:11:50
逆變器、電動汽車牽引逆變器和充電器市場)在創新中發揮著關鍵作用。預計未來五年太陽能市場將以10%的年復合增長率增長,非常樂觀,而光伏系統價格預計將再下降20%。這很可能是光伏逆變器電子元件技術進步的結果
2018-10-22 17:01:41
SiC功率器件的封裝技術要點
具有成本效益的大功率高溫半導體器件是應用于微電子技術的基本元件。SiC是寬帶隙半導體材料,與S
2009-11-19 08:48:432355 三菱電機株式會社定于7月31日開始,依次提供5個品種的SiC功率半導體模塊,以滿足家電產品與工業設備對應用SiC材料的新一代SBD和MOSFET等功率半導體的需要。在這5種產品中,3種適用于
2012-07-25 15:59:27718 全球知名半導體制造商ROHM面向工業設備和太陽能發電功率調節器等的逆變器、轉換器,開發出額定1200V/300A的“全SiC”功率模塊“BSM300D12P2E001”。
2015-05-05 14:07:44737 羅姆在全球率先實現了搭載羅姆生產的SiC-MOSFET和SiC-SBD的“全SiC功率模塊”量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低損耗。
2018-05-17 09:33:1313514 使用SiC的新功率元器件技術
2018-06-26 17:56:005775 隨著我國新能源汽車市場的不斷擴大,充電樁市場發展前景廣闊。SiC材料的功率器件可以實現比Si基功率器件更高的開關頻繁,可以提供高功率密度、超小的體積,因此SiC功率器件在充電樁電源模塊中的滲透率不斷增大。
2019-03-02 09:35:1813799 據外媒報道,比利時Cissoid公司推出一款三相SiC智能功率模塊(IPM),可用于電動出行。
2020-04-22 15:54:253711 該模塊符合AQG 324汽車功率模塊標準。B2 SiC模塊結合燒結技術用于裸片連接和銅夾,壓鑄模工藝用于實現強固的封裝。其SiC芯片組采用安森美的M1 SiC技術,從而提供高電流密度、強大的短路保護、高阻斷電壓和高工作溫度,在EV主驅應用中帶來領先同類的性能。
2022-05-06 09:27:27943 當前功率器件的研究已經進入一個新高度,而SiC功率模塊就是其中的熱門研究方向。
2022-10-19 09:22:23899 碳化硅(SiC)被認為是未來功率器件的革命性半導體材料;許多SiC功率器件已成為卓越的替代電源開關技術,特別是在高溫或高電場的惡劣環境中。
2022-11-06 18:50:471289 SiC MOSFET器件的集成化、高頻化和高效化需求,對功率模塊封裝形式和工藝提出了更高的要求。本文中總結了近年來封裝形式的結構優化和技術創新,包括鍵合式功率模塊的金屬鍵合線長度、寬度和并聯
2022-12-12 13:57:581468 一、SiC模塊的特征 電流功率模塊中廣泛采用的主要是由Si材料的IGBT和FRD組成的IGBT模塊。ROHM在世界上首次開始出售搭載了SiC-MOSFET和SiC-SBD的功率模塊。 由IGBT
2023-01-12 16:35:47489 1. SiC模塊的特征 大電流功率模塊中廣泛采用的主要是由Si材料的IGBT和FRD組成的IGBT模塊。ROHM在世界上首次開始出售搭載了SiC-MOSFET和SiC-SBD的功率模塊。 由IGBT
2023-02-07 16:48:23646 繼SiC概要、SiC-SBD(肖特基勢壘二極管 )、SiC-MOSFET之后,來介紹一下完全由SiC功率元器件組成的“全SiC功率模塊”。本文作為第一篇,想讓大家了解全SiC功率模塊具體是什么樣的產品,都有哪些機型。
2023-02-08 13:43:21685 全SiC功率模塊與現有的IGBT模塊相比,具有1)可大大降低開關損耗、2)開關頻率越高總體損耗降低程度越顯著 這兩大優勢。
2023-02-08 13:43:22673 ROHM在全球率先實現了搭載ROHM生產的SiC-MOSFET和SiC-SBD的“全SiC”功率模塊量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低損耗。
2023-02-10 09:41:081333 繼SiC概要、SiC-SBD(肖特基勢壘二極管 )、SiC-MOSFET之后,來介紹一下完全由SiC功率元器件組成的“全SiC功率模塊”。本文想讓大家了解全SiC功率模塊具體是什么樣的產品,都有哪些機型。之后計劃依次介紹其特點、性能、應用案例和使用方法。
2023-02-24 11:51:08430 全SiC功率模塊與現有的功率模塊相比具有SiC與生俱來的優異性能。本文將對開關損耗進行介紹,開關損耗也可以說是傳統功率模塊所要解決的重大課題。
2023-02-24 11:51:28496 隨著電子技術的不斷發展,硅碳化物(SiC)功率模塊逐漸在各領域獲得了廣泛應用。SiC功率模塊具有優越的電性能、熱性能和機械性能,為高性能電子設備提供了強大的支持。本文將重點介紹SiC功率模塊的封裝技術及其在實際應用中的優勢。
2023-04-23 14:33:22850 ?
全球知名半導體制造商ROHM的SiC MOSFET和SiC肖特基勢壘二極管(以下簡稱“SiC SBD”)已被成功應用于大功率模擬模塊制造商Apex?Microtechnology的功率模塊
2023-09-14 19:15:14353 解更多公司,建議查詢相關網站。 sic功率半導體技術如何實現成果轉化 SIC功率半導體技術的成果轉化可以通過以下途徑實現: 與現有產業合作:尋找現有的使用SIC功率半導體技術的企業,與他們合作,共同研究開發新產品,將技術轉化為商業化
2023-10-18 16:14:30586 在商業應用中利用寬帶隙碳化硅(SiC)的獨特電氣優勢需要解決由材料機械性能引起的可靠性挑戰。憑借其先進的芯片粘接技術,Vincotech 處于領先地位。 十多年前首次推出的SiC功率模塊可能會
2023-10-23 16:49:36372 1、SiC MOSFET對器件封裝的技術需求
2、車規級功率模塊封裝的現狀
3、英飛凌最新SiC HPD G2和SSC封裝
4、未來模塊封裝發展趨勢及看法
2023-10-27 11:00:52419 等領域。隨著技術的不斷進步和成本的降低,SiC驅動器模塊將進一步提升性能,擴大市場份額,并推動下一代功率器件的發展。
2023-11-16 15:53:30257 關鍵技術-SiC門驅動回路/電容器
通過SiC門驅動回路優化設計提升性能和強化保護功能通過采用電容器P-N BUSBAR疊層設計減少寄生電感
2024-01-02 11:36:24116 采用多芯片并聯的SiC功率模塊,會產生較嚴重的電磁干擾和額外損耗,無法發揮SiC器件的優良性能;SiC功率模塊雜散參數較大,可靠性不高。 (2)SiC功率高溫封裝技術發展滯后。
2024-03-04 10:35:49132 SiC器件的核心優勢在于其寬禁帶、高熱導率、以及高擊穿電壓。具體來說,SiC的禁帶寬度是硅的近3倍,這意味著在高溫下仍可保持良好的電性能;其熱導率是硅的3倍以上,有利于高功率應用中的熱管理。
2024-03-08 10:27:1542
評論
查看更多