人工神經網絡的內容有哪些?
人工神經網絡的內容有哪些?
人工神經網絡模型主要考慮網絡連接的拓撲結構、神經元的特征、學習規則等。目前,已有近40種神經網絡模型,其中有反傳網絡、感知器、自組織映射、Hopfield網絡、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網絡模型可以分為:
(1)前向網絡 網絡中各個神經元接受前一級的輸入,并輸出到下一級,網絡中沒有反饋,可以用一個有向無環路圖表示。這種網絡實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自于簡單非線性函數的多次復合。網絡結構簡單,易于實現。反傳網絡是一種典型的前向網絡。
(2)反饋網絡 網絡內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網絡的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網絡、波耳茲曼機均屬于這種類型。
學習是神經網絡研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網絡的學習算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前后神經元的活動而變化。在此基礎上,人們提出了各種學習規則和算法,以適應不同網絡模型的需要。有效的學習算法,使得神經網絡能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網絡的連接中。
根據學習環境不同,神經網絡的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網絡輸入端,同時將相應的期望輸出與網絡輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練后收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網絡模型有反傳網絡、感知器等。非監督學習時,事先不給定標準樣本,直接將網絡置于環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網絡等都是與競爭學習有關的典型模型。
研究神經網絡的非線性動力學性質,主要采用動力學系統理論、非線性規劃理論和統計理論,來分析神經網絡的演化過程和吸引子的性質,探索神經網絡的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網絡在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,“混沌”是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。“確定性”是因為它由內在的原因而不是外來的噪聲或干擾所產生,而“隨機性”是指其不規則的、不能預測的行為,只可能用統計的方法描述。混沌動力學系統的主要特征是其狀態對初始條件的靈敏依賴性,混沌反映其內在的隨機性。混沌理論是指描述具有混沌行為的非線性動力學系統的基本理論、概念、方法,它把動力學系統的復雜行為理解為其自身與其在同外界進行物質、能量和信息交換過程中內在的有結構的行為,而不是外來的和偶然的行為,混沌狀態是一種定態。混沌動力學系統的定態包括:靜止、平穩量、周期性、準同期性和混沌解。混沌軌線是整體上穩定與局部不穩定相結合的結果,稱之為奇異吸引子。一個奇異吸引子有如下一些特征:(1)奇異吸引子是一個吸引子,但它既不是不動點,也不是周期解;(2)奇異吸引子是不可分割的,即不能分為兩個以及兩個以上的吸引子;(3)它對初始值十分敏感,不同的初始值會導致極不相同的行為。
人工神經網絡-優越性
工神經網絡的特點和優越性,主要表現在三個方面:
第一,具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網絡,網絡就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對于預測有特別重要的意義。預期未來的人工神經網絡計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
第二,具有聯想存儲功能。用人工神經網絡的反饋網絡就可以實現這種聯想。
第三,具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網絡,發揮計算機的高速運算能力,可能很快找到優化解。
人工神經網絡-研究方向
神經網絡的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網絡模型,深入研究網絡算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網絡數理理論,如:神經網絡動力學、非線性神經場等。
應用研究可分為以下兩類:
2、神經網絡在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網絡理論本身以及相關理論、相關技術的不斷發展,神經網絡的應用定將更加深入。
非常好我支持^.^
(0) 0%
不好我反對
(0) 0%
相關閱讀:
- [電子說] SynSense時識科技發布Xylo?IMU開發套件 2023-09-28
- [MEMS/傳感技術] 用于仿生視覺傳感器內運動感知的光電分級神經元設計 2023-09-19
- [電子說] 人工神經網絡算法、PID算法、Python人工智能學習等資料包分享(附源代碼) 2023-09-15
- [電子說] npu是什么意思?npu芯片是什么意思?npu到底有什么用? 2023-08-27
- [電子說] 人工神經網絡和bp神經網絡的區別 2023-08-22
- [人工智能] 深度學習的定義和特點 深度學習典型模型介紹 2023-08-21
- [電子說] 卷積神經網絡主要包括哪些 卷積神經網絡組成部分 2023-08-21
- [電子說] 卷積神經網絡算法三大類 2023-08-21
( 發表人:admin )