LTE系統中FFT的實現
在數字信號處理中,離散傅里葉變換(DFT)是常用的變換方法,它在各種數字信號處理系統中扮演著重要的角色??焖俑道锶~變換(FFT)[1-2]是離散傅里葉變換的快速算法,它是根據離散傅里葉變換的奇、偶、虛、實等特性,對離散傅里葉變換的算法進行改進獲得的,兩者都是為了將信號變換到頻域并進行相應的頻譜分析。對于實時性要求很強的信號處理來說,運算速度對整個處理的影響是顯而易見的。因為FFT擁有很高的運算能力,使其在無線通信和數字通信、高速圖像處理、匹配濾波等領域得到極為廣泛的應用。
LTE作為準4G技術,以正交頻分復用OFDM和多輸入多輸出MIMO技術為基礎,下行采用正交頻分多址(OFDM)技術,上行采用單載波頻分多址(SC-FDMA)技術,在20MHz頻譜帶寬下能夠提供下行100Mb/s和上行50Mb/s的峰值速率[3]。
頻域分析比時域分析更優越,不僅簡單,且易于分析復雜信號[4]。在LTE系統中,FFT算法主要應用于基帶信號生成、信號的接收和檢測等,將時域信號轉移到頻域進行處理。
?
其中,x(n)為復數序列,WNkn和X(K)也為復數,因此每計算一個X(K)值,需要進行N次復數乘法運算和N-1次復數加法運算。而X(K)共有N個點,所以完成整個DFT運算需要進行N2次復數乘法和N(N-1)次復數加法運算,當N很大時,運算量相當可觀。然而對于實時性很強的信號處理來說,如滿足其要求,運算速度就太高了。利用旋轉因子WNkn的對稱性、周期性和可約性,可以使DFT運算中的有些項合并,將長序列的DFT分解為幾個短序列的DFT,從而大大減少運算次數。FFT算法可以分為時間抽取法和頻域抽取法兩大類。頻域抽取法的運算特點與時間抽取法的基本相同,不同之處是頻域抽取法的蝶形運算是先加后乘,時間抽取法的蝶形運算是先乘后加;頻域抽取的輸入序列是自然順序,輸出序列是倒序,而時間抽取法的輸入序列是倒序,輸出序列是自然順序。
假設輸入序列x(n)長度為N=2M,M是正整數。如果不滿足這個條件,在序列尾部人為地加上若干零值點,使其達到這一要求。將序列x(n)按n的奇偶分解為兩個N/2點的子序列:
?
2 FFT算法的DSP實現
2.1 硬件
TMS320C6000系列DSP是TI公司推向市場的高性能DSP,綜合了目前性價比高、功耗低等優點。TMS320C64系列提高了時鐘頻率,在體系結構上采用了VelociTI甚長指令集VLIW(Very Long Instruction Word)結構[5],芯片內有8個獨立功能單元的內核,每個周期可以并行執行8條32bit指令,最大峰值速度為4800MIPS,2組共64個32bit通用寄存器,32bit尋址范圍,支持8/16/32/40 bit的數據訪問,芯片內集成大容量SRAM,最大可達8Mb。由于出色的運算能力、高效的指令集、大范圍的尋址能力,使其特別適用于無線基站、測試儀表等對運算能力和存儲量要求高的應用場合。
2.2 FFT算法的DSP實現
FFT算法作為一個子函數模塊且輸入序列長度不盡相同,所以,方案定義了輸入輸出變量及其調用格式。調用格式:Turbo_Code(int*,int,int,char*,char*,int*),其中,int分別表示輸入序列的長度和FFT的級數;int*分別表示輸入序列的首地址和輸出序列的首地址;char*分別表示旋轉因子的余弦的首地址和旋轉因子的正弦的首地址。
FFT算法具體實現流程如下:
(1)時間抽取法的FFT中,每個蝶形的輸入、輸出數據節點在一條水平線上,所以每個蝶形的輸出數據可以立即存入原輸入數據所占用的存儲單元。這種原位計算可節省大量的內存,并且理論上減少不同寄存器之間存取數據的時間。
?
使用C語言編寫主函數,匯編語言編寫FFT算法的實現函數。程序中假設輸入數據最大長度為1024,由于DSP C6455可以直接存取處理32bit,所以在內存中定義了長度為8192bit作為存放輸出序列的內存空間。為了提高運算精確度,輸入數的實部和虛部分別占用一個字,在程序中進行復數相乘操作是采用匯編指令MPYHI。內存定義了長度為2048bit的Tempsequence作為存放倒序序列,并且建立了2張旋轉因子查找表,分別為Wr和Wi。
外循環中,在每次內循環之前從輸入比特序列中取出32bit放入一個寄存器,作為一個內循環的輸入,內循環結束后,取下一個32bit輸入比特更新這個寄存器。
- 第 1 頁:LTE系統中FFT的實現
- 第 2 頁:內循環
本文導航
非常好我支持^.^
(2) 100%
不好我反對
(0) 0%
相關閱讀:
- [電子說] HOLTEK新推出BH66F2475連續血糖監測MCU 2023-10-24
- [控制/MCU] Holtek新推出HT67F2452紅外線驅動A/D與LCD型Flash MCU 2023-10-23
- [電子說] 如何理解FFT中的頻譜泄露效應? 2023-10-23
- [電子說] LTE系統TDD無線幀結構特點 2023-10-21
- [電子說] 為什么會造成頻譜泄露?如何理解FFT中的頻譜泄露效應? 2023-10-20
- [電子說] 與4G相比,5G如何降低功耗呢? 2023-10-19
- [電子說] EaseFilter File System文件I/O監視器 2023-10-18
- [電子說] 直方圖測試模數轉換器(ADC)介紹 2023-10-17
( 發表人:小蘭 )