音箱,音響技術和聲學原理是什么?
音箱,音響技術和聲學原理是什么?
認識音箱
音箱基本上是由三大部分組成的:喇叭,分頻器,箱體。按照喇叭只數的多少分為兩單元,三單元。。。。
還有一種是把高音喇叭與低音喇叭做成一體的,稱為同軸單元,從外表上看是一個單元,實際上仍屬兩單元。
分頻器顧名思義就是把可聞聲音的頻段[20--20000Hz]分成幾個頻段,分別送往對應的喇叭單元。按照頻段劃分的多少,分成高,低音兩段的叫兩分頻分成高,中,低三段的叫三分頻,依次類推。
箱體,一般由原木或中密度板作成,按照箱體結構又分為密閉箱[無倒相孔,箱體內部空氣與外部絕緣],倒相箱[有倒相孔]。還有一些不大多見的箱體構造:迷宮式,指數式,負阻式,號筒式等。
按照音箱的使用范圍分為:專業箱[用于演出,廳,堂,場,館的擴聲]
監聽箱[用于各種錄音機構的專業監聽]民用箱。
按照音箱的放置方式又分為書架箱和落地箱,書架箱多是兩單元,兩分頻結構,多使用在20平方以內的房間內。落地箱多是多單元,多分頻結構。多使用在20平方以上。
音箱的性能指標:
一般音箱都標明他的許多應用參數最常見的有:
功率:一般用W或VA 計量,常見的為 標稱功率[額定功率,不失真功率]是指非線形失真不超過該音箱標準范圍的條件下的最大輸入功率。他是該音箱的正常工作功率,長期連續工作不致損壞。
靈敏度: 他的定義是,在音箱上施加1瓦功率的粉紅噪聲電壓時,在離參考點一米處所產生的聲壓。以分貝[db]表示。音箱的靈敏度越高,在同樣的驅動功率下就越響,這在使用小功率的功放時,靈敏度就顯得很重要了。
阻抗:它是指音頻信號加在音箱輸入端,音箱所呈現出的一個純阻。常見的有4歐,8歐,國外也有3歐,5歐系統的。使用時注意要與功放的輸出阻抗相匹配。特別是膽機對音箱阻抗的匹配尤其重要。
頻響范圍:
它的定義三言兩語不好說清,一般的是指音箱在音頻范圍內高低兩端下降負 3 db時的頻率重放范圍。自然是越寬越好了,現在的HI-FI音箱在高頻端做到20000HZ乃至30000HZ的重放以不成問題,低頻段由于受揚聲器口徑的限制和箱體容積的限制,做到20HZ就很不容易了,一般書架式音箱的低頻段就更差了。
好了,現在你已經對音箱有所認識了。說真的它很簡單,但是要做好卻極不簡單。對于初燒友來說在掌握了一定的音箱知識基礎后,自己動手制作一對入門級的HI-FI音箱也不是很難的。特別是現在一些商家推出了不少音箱套件,你只要按照制作圖紙仔細安裝,成功率是極高的,而且由于這些套件已經經過廠家精心設計和搭配,所以音質和效果就有了一定的保證,而其成本只有成品的二分之一到四分之一。筆者用紳士寶8545K單元精心制作的音箱與用一套單 元的進口音箱相比較,經多位資深發燒友聽音評價,音效絕不在洋貨之下,而成本只有三千多元,只有進口貨的四分之一。
制作音箱千萬不要拉郎配,買幾個單元和分頻器,買個成品箱體往上一裝完事。這樣制作出來的音箱是絕對不會好的。而且現在市場上偽劣假冒產品太多,質量得不到保證。比較保險的辦法是從一些信譽較高的銷售單位郵購成套套件。如果你的木工手藝不錯的話,自己按照推薦圖紙打造箱體也是完全可以的,或者找木工師傅代勞,只要箱體容積和低音單元推薦容積相配即可。
現在你可以相信自己了,音箱完全可以自己做!做入門級的音箱就更容易成功了,只需要郵購一套一定素質的套件,動手制作一對符合套件要求的箱體加上一個制作工日,OK !
接下來我們將在下期詳細介紹幾套價格低廉,制作容易,效果極好的音箱套件和散件。趕緊準備好口袋中的銀子哦。
?
音響技術與聲學原理
聲 學 原 理
( 1)聲學歷史
當森林中有一棵樹倒塌下來時,發出一陣轟然大響聲音,但是沒有人在這個原始森林中,所以就聽不到這聲音。這算不算有聲音發出來呢?聲音是肯定發出來了,因為當樹干及樹枝接觸地面時,它們都會產生某些聲音,但是沒有人聽見,但這聲音對于人類或其他動物所聽到的是有所不同,所以這就是聲學上所說的心理(Psychoacoustics)。
我在這里講的聲學原理,最主要是讓一個調音員能夠了解聲學的各方面,而不是進行聲學研究,或是碩士、博士的聲學論文,所以我在這書內講的聲學理論都是實際可以給在現場操作音響的人用得上的。
1915年,有一個美國人名叫 E. S. Pridham將一個當時的電話收聽器套在一個播放唱片音響的號角上,而聲音可以給一群在舊金山市慶祝圣誕的群眾聽時,電聲學就誕生了。當第一次世界大戰結束之后,在美國哈定總統(Harding)就職典禮上,美國貝爾公司把電話的動圈收聽器連接在當時的唱片唱機的號角上,就能夠把聲音傳給觀看總統就職典禮的一大群群眾,因此就產生了很多專業的音響研究及開發了擴聲工程這門學問。音響研究人員不單純是努力地把音響器材進行改進,也做了各類不同的實驗來了解人類對聽覺的反應。但最高級的音響研究人同都明白音響學是要整體的研究,要了解音響器材的每一個環節,及人類對聽覺的生理反應,他們在過去多年內直至現在都作出了很大的貢獻。早在1877年,英國的萊李爵士(Lord Raleigh)就已經做過聲學的研究,他曾經說過:“所有不論直接或間接有關音響的問題,一定要用我們的耳朵來做決定,因為它是我們的聽覺的器官,而耳朵的決定就應該算是最后決定,是不需要再接受上訴的。但這不是等于所有的音響研究都是單靠用耳朵來進行。當我們發現聲音的根基是一個物理的現象時,我們探測這個音響境界就要轉到另外一個領域范圍,它就是物理學。重要的定率是可以從研究這方面而來,而我們的聽覺感應也一定要接受這些定率。”我們可以從以上一段文字看到,就算在沒有電聲音響學產生的時候,老前輩科學家都認為這個是物理的領域。
著名科學家英國的卡爾文勛爵常常說:“當你度量你所述的事物,而能用數字來表達它,你對這事物已有些知識。但如果你不能用數字來表達它,那么你的知識仍然是簡陋的和不完滿的;對任何事物而言,這可能是知識的始源,但你的意念還未達到科學的境界。”卡爾文勛爵(1824—1907)是19世紀最出色的科學家之一,后世的科學家為了要紀念這位偉人,把絕對溫度—273.16攝氏度命名為0度卡爾文度。
戴維斯夫婦(Don& Carolyn Davis)是《音響系統工程》(Sound System Engineering)這本書的作者。這書被稱為音響圣經,幾乎是每一個外國研究音響的人必讀之物。我引述他書內這一段:“具有數學和物理學的知識,是實質上了解音響工程學的必要條件。對這兩種科學認識越深,越能使你跨越從感覺上所得到的意念,而達到用科學來引證事實。著名音響家占士摩亞曾經說過:‘在音響學中,任何在表面看來很明顯的事情,通常都是錯誤的’?!?/font>
我在以上引述了幾位科學家及音響學家的訓言,主要是因為現在大部分做音響的人士,他們當然是對音響及音樂很有興趣,但是以為光靠他們的聽覺就可以鑒定什么是好或不好的音響,不明白這是一門專業的工程學問,是做不好音響的。遠在19世紀的萊李爵士已經指出這是一個科學的境界,現代的音響工程學也像其它科學學術一樣正在努力地發展,所以音響工程學是離不開數學及物理學的。
( 2)現場音晌與錄音室音晌的分別
在這里所講解的現場音響地操作,它與錄音技術是有很多不同的地方,有很多人以為音響的最高境界就是錄音技術,這是不全面的。在錄音技術上,基本是沒有碰到反饋的情況,因為在一個錄音室內進行操作時,所有的外圍因數都可以得到控制,但是在現場音響重播時,我們是不可以避免有很多現場音響的問題,所以現場音響和錄音音響是兩種不同的學問。
現場音響跟錄音室音響的要求是不同的,所以有很多器材也是不同的。例如在錄音室內所用的調音臺,它們的每路輸入都有多個參數均衡,讓錄音師可以把每路輸入的音源盡量做最精密地微調,務求達到最好的音源效果。一個用來做現場音響的調音臺,通常在它的每路輸入,均衡都是比較簡單的。因為很多時候,現場調音師根本就沒有很多時間把每路的音源做很仔細地微調,而在現場音響的調音臺每路的音量控制推桿,它們除了可以把音量做衰減外,也可以增益10—14 dB。如果做錄音室用的調音臺,這推桿很多時候是不需要做增益的,所以這推桿的英文名稱就是 fader,意思就是衰減器。用在現場音響的大功率功放,它們都會有風扇作為散熱用途,因為現場音響的功放是常常在最大功率輸出的情況下工作,并且有很多時候是在戶外做現場音響時,周圍的溫度可能相當高。如果在錄音室內,通常都一定會有空調,溫度當然不會太高,而錄音室內的功放,主要是用來推監聽音箱用的,當然不需要輸出很大的功率,所以功放只需要用普通的散熱器,就可以把很小的熱量散走。如果功放裝有風扇的話,風扇發出來的聲音反而造成噪音,所以在錄音室內的功放基本上是不需要風扇的。
現場音響所用的音箱,為著要把很大的聲壓傳播繪在遠距離的觀眾,所以它們是需要很高效率的,但在錄音室內所用的監聽音箱,是錄音師用來監聽聲源或錄音的最后結果,錄音師是坐在距監聽音箱很近的地方來監聽,所以監聽音箱是一種近音場的音箱,不需要高靈敏度,作用跟現場音響音箱是完全不同的。
( 3)音頻與波長的關系
很多現場調音師都沒有理會到音頻與波長的關系,其實這是很重要的:音頻及波長與聲音的速度是有直接的關系。在海拔空氣壓力下,21攝氏溫度時,聲音速度為344m/s,而我接觸國內的調音師,他們常用的聲音速度是34Om/s,這個是在15攝氏度的溫度時聲音的速度,但大家最主要記得就是聲音的速度會隨著空氣溫度及空氣壓力而改變的,溫度越低,空氣里的分子密度就會增高,所以聲音的速度就會下降,而如果在高海拔的地方做現場音響,因為空氣壓力減少,空氣內的分子變得稀少,聲音速度就會增加。音頻及波長與聲音的關系是:波長=聲音速度/頻率; λ=v/f,如果假定音速是344 m/s時,100Hz的音頻的波長就是3.44 m,1000hz(即lkHz)的波長就是34.4 cm,而一個20kHz的音頻波長為1.7cm。
( 4)音箱的高、中、低頻率
例如我們現在有一個18時的紙盆揚聲器單元,裝置在一個用木材造的音箱內,而這音箱的面板面積是 l平方米,即這面板的高度及寬度均是 l米。我們怎樣計算這音箱的高、中、低頻率呢?首先我們要計算這音箱面板的對角長度,是2的方根=1.414m,任何頻率的 l/4波長是超過1.414m時,對這音箱來說它就是低頻;如果一個頻率的 l/4波長是1.414m時,波長就是4×1.414m= 5.656m,這頻率=344m/s÷5.656m=60.8/s=60.8Hz,所以任何音頻低于60.8Hz時,對這音箱來說就是它的低頻率。當60.8Hz或更低的頻率從這音箱傳播出來時,它們的擴散形象是球型的,等于如果我們把這音箱懸掛在一個房間中間時,這些頻率的音量在音箱的前后左右及上下所發出來的聲壓都是差不多的,放出來的聲音變成沒有方向性。當某頻率的 l/4波長是小于音箱面板的對角長度,但這波長又大于揚聲器的半徑時,這段頻率就是這音箱的中頻率。例如我們現在是用一個18時單元,這單元的半徑為9寸,就是22.86cm=0.2286m,這個音頻為344m/s÷0.2286m=1505Hz,從60.8Hz-1505HZ頻就是這音箱的中頻率。中頻率從這音箱所擴散出來的形狀是半球形的,即如果我們把這段頻率從剛才懸掛在房間中心的音箱放出來時,聲音從音箱面板擴散出來的形狀是半球形。在音箱后面是聽不到這段頻率的聲音。1505Hz及更高的頻率,對這音箱來說就是它的高頻率。高頻率從音箱擴散出來的聲音形狀是錐形的,頻率越高,錐的形狀越窄。通常如果頻率超過開始高音頻的4倍時,聲音擴散出來的形狀會慢慢變成一條直線而不擴散,如果不是坐在對正單元的位置,就聽不到這些高頻率。所以很多高頻率單元如果是紙盆型的話,這紙盆的直徑是很小的,把這音箱的高頻下限盡量提高,希望能夠使高頻擴散的寬度增加。我們常常見到家庭音響音箱中的高音單元,通常會用 l—2時的紙盆單元,或半球狀的單元,理由就是這個原因。而專業現場音響的高音單元,因為要發出很大的高頻聲壓,所以說一定是采用號角處理的。
( 5)各類不同的音場
當一個紙盆揚聲器接受了從功放傳過來的信號后,紙盆就會作出前后的搖動,當紙盆向前推進時,紙盆撞擊到它前面的空氣分子,在紙盆前面的空氣就會增加壓力,這些分子就會繼續向前推進,碰撞它們前面的空氣分子,造成輕微的高氣壓。當紙盆向后退時,紙盆前面的空氣分子就會產生輕微的真空,然后這些分子會跟著紙盆的后退,造成這里的空氣有輕微的壓力減少。但我們不要忘記,空氣是有彈力的,但在紙盆前面的空氣是剛剛被紙盆的動作搖動,不能達到空氣本身的彈力,這時我們便要看這頻率的波長,聲音是要直到離開紙盆的距離有2.5倍波長時,這些空氣才發揮出造成聲音的彈力。例如一個100Hz的頻率,它的波長是3.44米,所以聲音要離開紙盆2.5×3.44米=8.6米之外,才是真正的這個100Hz的聲音。如果用10OHz來算,離開紙盆的距離還沒達到8.6米就為 lOOHz的近音場,而超過8.6米才是100Hz的遠音場。為什么我們要了解遠近音場呢?很多時候在一隊樂隊中的電貝司手,他往往都不了解近音場的效果,而在他的電貝司音箱上,有一個均衡旋鈕就是寫著貝司(Bass) ,正是這樂手的稱號。電貝司手通常會站在離開電貝司音箱不遠的地方做演奏,如果他站在近音場時,有時會覺得低音不足,就會把這Bass的均衡旋鈕盡量調大,但聽眾在他們的位置就會聽得到很強烈的低音,很多時候造成不好的效果。這些強烈的低音也會跑進歌手的話筒,如果調音師因為覺得歌手的聲音不足夠時,就會把歌手這一路的聲音提高,但也同時把電貝司的低音量也提高了,調音就遇上了困難。電貝司的最低E弦是41Hz,但因為拾音器是放在弦的末段,所以41hz第一個諧音82Hz才是主要的電貝司低頻率,82Hz的波長是 4.2米(344m/s 除以82/s=4.195m),所以差不多要離開電貝司音箱 10米左右才是這82Hz的遠音場,而因為電貝司手不會站到離開他的音箱這么遠的距離時,他聽到的聲音只是近音場,而不是聽眾所聽得到的聲音。所以我們當說到揚聲器的遠近音場時,最主要是注意到頻率及它的波長,而不是單純看離開音箱多遠就是等于遠或近音場,最主要就是記得我們當欣賞音樂時,是要在遠音場的位置,而不是在近音場的位置。
(6)直接音場、反射音場、不直接音場
當揚聲器在一個房間內發出聲音,聽眾可以聽到直接從揚聲器傳過來的聲音,這就是直接音場(indirectfield),但也可以聽到從墻、天花板及地板所反射過來的聲音,這就叫做反射音場(reverberant field)。聽眾聽到越多的直接音場的聲音,反射音場的聲音就越小時,這聲音就越好,因為直接音場的聲音是可以控制的,但反射音場的聲音是不能控制的,只會把直接育場發出來的聲音加上喧染,把原本聲音的清晰度底減低,所以坐得離音箱比較近的聽眾就會感覺到好一點的音響效果,而坐在后面的聽眾很可能是他們聽到的反射音場聲音比直接音場聲音更大,音響效果便會比較差及清晰度降低。有時候一隊樂隊在臺上演出時,因為他們沒有監聽音箱,而兩旁的主音箱是放在靠近臺口的位置,樂隊及歌手所聽到的聲音完全沒有從直接音場放過來的,他們站立的位置就叫做不直接音場,聲音效果當然不會好,這也會影響到樂隊的表演水平,令觀眾聽到不太好的演出聲音。
(7)界面干擾
當我們選擇放置音箱的位置時,很重要的一環是要注意到音箱所發出來的聲音是會受到它旁邊的界面影響而造成干擾。例如放在臺口兩旁的主音箱,它們的低音紙盆離開地面及旁邊的墻壁如果是大約在1米的時候,一個4米波長的音頻就會受到這兩個界面的干擾。一個4米波長的頻率是 86Hz(344m/s ÷ 4m= 86Hz),當 86HZ的聲音從音箱放出來時,大的空氣壓力在1/4周內剛巧碰到地面及墻壁,再過l/4周就反射回到音箱的紙盆面前,但這個時候剛巧紙盆要后退,原來從地面及墻壁反射過來的大空氣壓力就會被紙盆后退的動作抵消很多,造成失去了很重要的低音。如果遇到這個情況,就應該把音箱向臺后退0.5-1米,讓音箱所發出來的聲音不能直接射到地面上,而如果可以把音箱移到靠近兩邊的墻壁時,更可利用墻壁的反射制做出更大的音量。80-100Hz 這段頻率是很重要的,它是我們肺部空間的共鳴點,也是低音鼓的共鳴頻率,如果是因為不了解界面干擾而擺錯了音箱放置的位置,實在是很不值得的。
(8)高、低音效果
我們很難指定某一頻率以上為高音或某頻率以下為低音,我們常常說人的聽覺是從20Hh-20KHz,但20kHz的頻率是很少人能夠聽到的,通常只有20歲以下的青年人,他們的耳朵沒有受到任何的損壞時才可以聽得到。如果做聽覺測驗,最高的測聽頻率只是8 kHz。當聲音傳出去時,高頻率是比低頻率衰減快得多,如果用1kHz跟10kHz做比較時,當聲音跑了100米后,10kHz的‘頻率比起IkHz的音量會衰減30-35dB的。(請參看圖①)比起低頻率,高頻率聲音是比較有方向性的。高頻率的聲音從單元跑了出來后,如果受到物體的阻擋,高音就不能再傳過去,這個是跟低頻率有很大的不同,因為高頻率的波長是比較短,受到物體阻擋之后不會轉彎,但低頻率的波長是比較長,所以很多時候就算有物體在前面阻擋,低頻率也可以轉彎過去。例如有些專業音箱的設計是把一個高音號角放在它的低音單元前面,但對這個低音單元所發出來的低頻率,它根本就看不到前面是有什么東西阻擋聲音似的,所以低頻率可以照樣傳過去。 從我們的聽覺上來說,我們是需要聽到高頻率的聲音來辨別各類不同的聲音,但如果單純是講人的談話聲時,我們只需要聽到4kHz及以下的頻率,就能馬上辨別是什么人在說話。例如電話的聲音傳送,高頻只達到4kHz,所以有時候當一個很久都沒有和你談話的人,當他打電話給你時,只要說:“喂!”,你就馬上便可以鑒別他是你很久都沒有談過話的朋友的聲音。我們聽高頻也有方向性,即是我們能夠辨別高頻聲音來源的方向。因為高頻的聲音傳到我們兩個耳朵時,已經有了很細微的時間差,所以它們來到耳朵的時候有不同的相位改變,我們就借著這改變了的相位可以鑒定 ?
非常好我支持^.^
(120) 100%
不好我反對
(0) 0%
相關閱讀:
- [電子說] 國產藍牙芯片的發展趨勢值藍牙數傳ble芯片 2023-10-24
- [電子說] 藍牙智能音箱采用哪些音頻功放芯片 2023-09-28
- [電子說] MediaTek 無線多聲道音響技術,助力家庭娛樂體驗再升級 2023-09-27
- [電子說] 觸摸芯片在小功率音箱中的應用 2023-09-19
- [電子說] 一種增加音箱聲卡的OTG功能的設計 2023-09-16
- [電子說] 應用在Wi-Fi音箱中的國產高性能DSP音頻處理芯片 2023-09-14
- [電子說] IP網絡有源音箱(帶本地擴音功能)適用于各類多媒體教室、電教室、普通教室 2023-09-13
- [電子說] FP5207升壓芯片在拉桿音箱中的應用-激發拉桿音箱震撼之聲 2023-09-06
( 發表人:admin )