以TensorFlow教機器人作曲
大小:0.8 MB 人氣: 2017-10-09 需要積分:1
本文會用 TensorFlow 來寫一個音樂生成器。
當你對一個機器人說: 我想要一種能夠表達出希望和奇跡的歌曲時,發生了什么呢?
計算機會首先把你的語音轉化成文字,并且提取出關鍵字,轉化成詞向量。然后會用一些打過標簽的音樂的數據,這些標簽就是人類的各種情感。接著通過在這些數據上面訓練一個模型,模型訓練好后就可以生成符合要求關鍵詞的音樂。程序最終的輸出結果就是一些和弦,他會選擇最貼近主人所要求的情感關鍵詞的一些和弦來輸出。當然你不只是可以聽,也可以作為創作的參考,這樣就可以很容易地創作音樂,即使你還沒有做到刻意練習1萬小時。
機器學習其實是為了擴展我們的大腦,擴展我們的能力。
DeepMind 發表了一篇論文,叫做WaveNet, 這篇論文介紹了音樂生成和文字轉語音的藝術。
通常來講,語音生成模型是串聯。這意味著如果我們想從一些文字的樣本中來生成語音的話,是需要非常大量的語音片段的數據庫,通過截取它們的一部分,并且再重新組裝到一起,來組成一個完整的句子。
生成音樂也是同樣的道理,但是它有一個很大的難點:就是當你把一些靜止的組件組合到一起的時候,生成聲音需要很自然,并且還要有情感,這一點是非常難的。
一種理想的方式是,我們可以把所有生成音樂所需要的信息存到模型的參數里面。也就是那篇論文里講的事情。
我們并不需要把輸出結果傳給信號處理算法來得到語音信號,而是直接處理語音信號的波。
他們用的模型是 CNN。這個模型的每一個隱藏層中,每個擴張因子,可以互聯,并呈指數型的增長。每一步生成的樣本,都會被重新投入網絡中,并且用于產生下一步。
我們可以來看一下這個模型的圖。輸入的數據,是一個單獨的節點,它作為粗糙的音波,首先需要進行一下預處理,以便于進行下面的操作。
接著我們對它進行編碼,來產生一個 Tensor,這個 Tensor 有一些 sample 和 channel。然后把它投入到 CNN 網絡的第一層中。這一層會產生 channel 的數量,為了進行更簡單地處理。然后把所有輸出的結果組合在一起,并且增加它的維度。再把維度增加到原來的 channel 的數量。把這個結果投入到損失函數中,來衡量我們的模型訓練的如何。最后,這個結果會被再次投入到網絡中,來生成下一個時間點所需要的音波數據。重復這個過程就可以生成更多的語音。這個網絡很大,在他們的 GPU 集群上需要花費九十分鐘,并且僅僅只能生成一秒的音頻。
接下來我們會用一個更簡單的模型在 TensorFlow 上來實現一個音頻生成器。
1.引入packaGEs:
數據科學包 Numpy ,數據分析包 Pandas,tqdm 可以生成一個進度條,顯示訓練時的進度。
import numpy as np
import pandas as pd
import msgpack
import glob
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
from tqdm import tqdm
import midi_manipulation
我們會用到一種神經網絡的模型 RBM-Restricted Boltzmann Machine 作為生成模型。
它是一個兩層網絡:第一層是可見的,第二層是隱藏層。同一層的節點之間沒有聯系,不同層之間的節點相互連接。每一個節點都要決定它是否需要將已經接收到的數據發送到下一層,而這個決定是隨機的。
2.定義超參數:
先定義需要模型生成的 note 的 range
lowest_note = midi_manipulation.lowerBound #the index of the lowest note on the piano roll
highest_note = midi_manipulation.uPPerBound #the index of the highest note on the piano roll
note_range = highest_note-lowest_note #the note range
接著需要定義 timestep ,可見層和隱藏層的大小。
num_timesteps = 15 #This is the number of timesteps that we will create at a time
n_visible = 2note_rangenum_timesteps #This is the size of the visible layer.
n_hiDDen = 50 #This is the size of the hidden layer
訓練次數,批量處理的大小,還有學習率。
num_epochs = 200 #The number of training epochs that we are going to run. For each epoch we go through the entire data set.
BAtch_size = 100 #The number of training examples that we are going to send through the RBM at a time.
lr = tf.constant(0.005, tf.float32) #The learning rate of our model
3.定義變量:
x 是投入網絡的數據
w 用來存儲權重矩陣,或者叫做兩層之間的關系
此外還需要兩種 bias,一個是隱藏層的 bh,一個是可見層的 bv
x = tf.placeholder(tf.float32, [None, n_visible], name=”x”) #The placeholder variable that holds our data
W = tf.Variable(tf.random_normal([n_visible, n_hidden], 0.01), name=”W”) #The weightMATrix that stores the edge weights
bh = tf.Variable(tf.zeros([1, n_hidden], tf.float32, name=”bh”)) #The bias vector for the hidden layer
bv = tf.Variable(tf.zeros([1, n_visible], tf.float32, name=”bv”)) #The bias vector for the visible layer
接著,用輔助方法 gibbs_sample 從輸入數據 x 中建立樣本,以及隱藏層的樣本:
gibbs_sample 是一種可以從多重概率分布中提取樣本的算法。
它可以生成一個統計模型,其中,每一個狀態都依賴于前一個狀態,并且隨機地生成符合分布的樣本。
#The sample of x
x_sample = gibbs_sample(1)
#The sample of the hidden nodes, starting from the visible state of x
h = sample(tf.sigmoid(tf.matMUl(x, W) + bh))
#The sample of the hidden nodes, starting from the visible state of x_sample
h_sample = sample(tf.sigmoid(tf.matmul(x_sample, W) + bh))
4.更新變量:
size_bt = tf. CA
st(tf.shape(x)[0], tf.float32)
W_adder = tf.mul(lr/size_bt, tf.sub(tf.matmul(tf.transpose(x), h), tf.matmul(tf.transpose(x_sample), h_sample)))
bv_adder = tf.mul(lr/size_bt, tf.reduce_sum(tf.sub(x, x_sample), 0, True))
bh_adder = tf.mul(lr/size_bt, tf.reduce_sum(tf.sub(h, h_sample), 0, True))
#When we do sess.run(updt), TensorFlow will run all 3 update steps
updt = [W.assign_add(W_adder), bv.assign_add(bv_adder), bh.assign_add(bh_adder)]
5.運行 Graph 算法圖:
先初始化變量
with tf.Session() as sess:
#First, we train the model
#initialize the variables of the model
init = tf.initialize_all_variables()
sess.run(init)
首先需要 reshape 每首歌,以便于相應的向量表示可以更好地被用于訓練模型。
for epoch in tqdm(range(num_epochs)):
for song in sonGS:
#The songs are stored in a time x notes format. The size of each song is timesteps_in_song x 2*note_range
#Here we reshape the songs so that each training example is a vector with num_timesteps x 2*note_range elements
song = np.array(song)
song = song[:np.floor(song.shape[0]/num_timesteps)*num_timesteps]
song = np.reshape(song, [song.shape[0]/num_timesteps, song.shape[1]*num_timesteps])
接下來就來訓練 RBM 模型,一次訓練一個樣本
for i in range(1, len(song), batch_size):
tr_x = song[i:i+batch_size]
sess.run(updt, feed_dict={x: tr_x})
模型完全訓練好后,就可以用來生成 music 了。
需要訓練 Gibbs chain
其中的 visible nodes 先初始化為0,來生成一些樣本。
然后把向量 reshape 成更好的格式來 playback。
sample = gibbs_sample(1).eval(session=sess, feed_dict={x: np.zeros((10, n_visible))})
for i in range(sample.shape[0]):
if not any(sample[i,:]):
continue
#Here we reshape the vector to be time x notes, and then save the vector as a midi file
S = np.reshape(sample[i,:], (num_timesteps, 2*note_range))
最后,打印出生成的和弦
midi_manipulation.noteStateMatrixToMidi(S, “generatedchord{}”.format(i))1212
綜上,就是用 CNN 來參數化地生成音波,用 RBM 可以很容易地根據訓練數據生成音頻樣本,Gibbs 算法可以基于概率分布幫我們得到訓練樣本。
?
非常好我支持^.^
(0) 0%
不好我反對
(0) 0%