色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

只需一個API,包含了27個預訓練模型

DPVg_AI_era ? 來源:lq ? 2019-07-27 07:52 ? 次閱讀

只需一個API,直接調用BERT, GPT, GPT-2, Transfo-XL, XLNet, XLM等6大框架,包含了27個預訓練模型。簡單易用,功能強大。

One API to rule them all。

前幾日,著名最先進的自然語言處理預訓練模型庫項目pytorch-pretrained-bert改名Pytorch-Transformers重裝襲來,1.0.0版橫空出世。

只需一個API,直接調用BERT, GPT, GPT-2, Transfo-XL, XLNet, XLM等6大框架,包含了27個預訓練模型。

簡單易用,功能強大。目前已經包含了PyTorch實現、預訓練模型權重、運行腳本和以下模型的轉換工具:

BERT,論文:“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”,論文作者:Jacob Devlin, Ming-Wei Chang, Kenton Lee,Kristina Toutanova

OpenAI 的GPT,論文:“Improving Language Understanding by Generative Pre-Training”,論文作者:Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever

OpenAI的GPT-2,論文:“Language Models are Unsupervised Multitask Learners”,論文作者:Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,Ilya Sutskever

谷歌和CMU的Transformer-XL,論文:“Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context”,論文作者:Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.

谷歌和CMU的XLNet,論文:“XLNet: Generalized Autoregressive Pretraining for Language Understanding”,論文作者:Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

Facebook的XLM,論文:“Cross-lingual Language Model Pretraining”,論文作者:Guillaume Lample,Alexis Conneau

這些實現都在幾個數據集(參見示例腳本)上進行了測試,性能與原始實現相當,例如BERT中文全詞覆蓋在SQuAD數據集上的F1分數為93;OpenAI GPT 在RocStories上的F1分數為88;Transformer-XL在WikiText 103上的困惑度為18.3;XLNet在STS-B的皮爾遜相關系數為0.916。

項目中提供27個預訓練模型,下面是這些模型的完整列表,以及每個模型的簡短介紹。

BERT-base和BERT-large分別是110M和340M參數模型,并且很難在單個GPU上使用推薦的批量大小對其進行微調,來獲得良好的性能(在大多數情況下批量大小為32)。

為了幫助微調這些模型,作者提供了幾種可以在微調腳本中激活的技術 run_bert_classifier.py和run_bert_squad.py:梯度累積(gradient-accumulation),多GPU訓練(multi-gpu training),分布式訓練(distributed training )和16- bits 訓練( 16-bits training)。

注意,這里要使用分布式訓練和16- bits 訓練,你需要安裝NVIDIA的apex擴展。

作者在doc中展示了幾個基于BERT原始實現和擴展的微調示例,分別為:

九個不同GLUE任務的序列級分類器;

問答集數據集SQUAD上的令牌級分類器;

SWAG分類語料庫中的序列級多選分類器;

另一個目標語料庫上的BERT語言模型。

這里僅展示GLUE的結果:

該項目是在Python 2.7和3.5+上測試(例子只在python 3.5+上測試)和PyTorch 0.4.1到1.1.0測試。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 自然語言處理

    關注

    1

    文章

    619

    瀏覽量

    13579
  • pytorch
    +關注

    關注

    2

    文章

    808

    瀏覽量

    13246

原文標題:GitHub超9千星:一個API調用27個NLP預訓練模型

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    KerasHub統、全面的訓練模型

    深度學習領域正在迅速發展,在處理各種類型的任務中,訓練模型變得越來越重要。Keras 以其用戶友好型 API 和對易用性的重視而聞名,始終處于這
    的頭像 發表于 12-20 10:32 ?116次閱讀

    什么是大模型、大模型是怎么訓練出來的及大模型作用

    ,基礎模型。 ? 大模型簡稱,完整的叫法,應該是“人工智能訓練
    的頭像 發表于 11-25 09:29 ?1736次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓練</b>出來的及大<b class='flag-5'>模型</b>作用

    從零開始訓練大語言模型需要投資多少錢?

    ,前言 ? 在AI領域,訓練大型語言模型(LLM)是
    的頭像 發表于 11-08 14:15 ?242次閱讀
    從零開始<b class='flag-5'>訓練</b><b class='flag-5'>一</b><b class='flag-5'>個</b>大語言<b class='flag-5'>模型</b>需要投資多少錢?

    直播預約 |數據智能系列講座第4期:訓練的基礎模型下的持續學習

    鷺島論壇數據智能系列講座第4期「訓練的基礎模型下的持續學習」10月30日(周三)20:00精彩開播期待與您云相聚,共襄學術盛宴!|直播信息報告題目
    的頭像 發表于 10-18 08:09 ?239次閱讀
    直播預約 |數據智能系列講座第4期:<b class='flag-5'>預</b><b class='flag-5'>訓練</b>的基礎<b class='flag-5'>模型</b>下的持續學習

    如何訓練有效的eIQ基本分類模型

    在 MCX CPU和eIQ Neutron NPU上。 eIQPortal它是直觀的圖形用戶界面(GUI),簡化了ML開發。開發人員可以創建、優化、調試和導出ML模型,以及導入數據集和模型
    的頭像 發表于 08-01 09:29 ?1885次閱讀
    如何<b class='flag-5'>訓練</b><b class='flag-5'>一</b><b class='flag-5'>個</b>有效的eIQ基本分類<b class='flag-5'>模型</b>

    訓練和遷移學習的區別和聯系

    訓練和遷移學習是深度學習和機器學習領域中的兩重要概念,它們在提高模型性能、減少訓練時間和降低對數據量的需求方面發揮著關鍵作用。本文將從定
    的頭像 發表于 07-11 10:12 ?1103次閱讀

    大語言模型訓練

    能力,逐漸成為NLP領域的研究熱點。大語言模型訓練是這技術發展的關鍵步驟,它通過在海量無標簽數據上進行訓練,使
    的頭像 發表于 07-11 10:11 ?443次閱讀

    訓練模型的基本原理和應用

    訓練模型(Pre-trained Model)是深度學習和機器學習領域中的重要概念,尤其是在自然語言處理(NLP)和計算機視覺(CV)
    的頭像 發表于 07-03 18:20 ?2927次閱讀

    解讀PyTorch模型訓練過程

    PyTorch作為開源的機器學習庫,以其動態計算圖、易于使用的API和強大的靈活性,在深度學習領域得到了廣泛的應用。本文將深入解讀PyTorch模型
    的頭像 發表于 07-03 16:07 ?1092次閱讀

    深度學習模型訓練過程詳解

    深度學習模型訓練復雜且關鍵的過程,它涉及大量的數據、計算資源和精心設計的算法。訓練
    的頭像 發表于 07-01 16:13 ?1325次閱讀

    大語言模型:原理與工程時間+小白初識大語言模型

    的分布式表示,基于訓練的詞嵌入表示。 獨熱表示就是在大的向量空間中,其中位1,其余都為
    發表于 05-12 23:57

    【大語言模型:原理與工程實踐】大語言模型訓練

    進行損失計算,得到下一個目標的預測。也會設計些其他輔助訓練任務,與主任務共同訓練。選擇合適的訓練
    發表于 05-07 17:10

    【大語言模型:原理與工程實踐】大語言模型的基礎技術

    就無法修改,因此難以靈活應用于下游文本的挖掘中。 詞嵌入表示:將每個詞映射為低維稠密的實值向量。不同的是,基于訓練的詞嵌入表示先在語料庫中利用某種語言
    發表于 05-05 12:17

    【大語言模型:原理與工程實踐】核心技術綜述

    的具體需求,這通常需要較少量的標注數據。 多任務學習和遷移學習: LLMs利用在訓練中積累的知識,可以通過遷移學習在相關任務上快速適應,有時還可以在
    發表于 05-05 10:56

    谷歌模型訓練軟件有哪些功能和作用

    谷歌模型訓練軟件主要是指ELECTRA,這是種新的訓練方法,源自谷歌AI。ELECTRA不僅擁有BERT的優勢,而且在效率上更勝
    的頭像 發表于 02-29 17:37 ?804次閱讀
    主站蜘蛛池模板: 精品久久久99大香线蕉| 国产精品亚洲AV色欲在线观看| 99久久精品毛片免费播放| 国产午夜精品福利久久| 人人看人人看| 91福利潘春春在线观看| 看了n遍舍不得删的黄文| 亚洲精品色婷婷在线蜜芽| 国产精品久久久久影院色| 日本亚洲精品无码区国产电影| jizz日本美女| 热の中文 AV天堂| 扒开黑女人p大荫蒂老女人| 欧美片第1页 综合| 最新日本免费一区| 两个人的视频免费| 在线观看成人免费视频| 久久er99热精品一区二区| 亚洲欧美无码2017在线| 精品日韩视频| 在线观看日韩一区| 恋夜影视列表免费安卓手机版| 中国农村真实bbwbbwbbw| 久久无码人妻AV精品一区| 在线视频久久只有精品第一日韩| 久久久久婷婷国产综合青草| 中国欧美日韩一区二区三区| 麻花豆传媒剧国产免费mv观看| 777黄色片| 日本漫画无彩翼漫画| 国产成人欧美日韩在线电影| 无码国产成人777爽死| 黑人特黄AA完整性大片| 伊人久久久久久久久香港| 狂野欧美性猛XXXX乱大交| 99视频福利| 色cccwww| 好爽好深太大了再快一点| 中国女人内谢69XXXXXA片| 牛牛免费视频| 国产99网站|