色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能有望改變現(xiàn)有醫(yī)療格局

Hf1h_BigDataDig ? 來源:YXQ ? 2019-07-31 14:31 ? 次閱讀

醫(yī)療領(lǐng)域常常被認(rèn)為是處于AI革命邊緣的領(lǐng)域。人工智能領(lǐng)域的很多知名企業(yè),如谷歌的DeepMind,都聲稱他們一直在醫(yī)療領(lǐng)域努力耕耘,“人工智能有望改變現(xiàn)有醫(yī)療格局”。

但到目前為止AI到底產(chǎn)生了多大影響力?我們是否真的可以知曉從新技術(shù)中獲益的具體醫(yī)療領(lǐng)域呢?

在今年5月召開的ACM CHI“計算機系統(tǒng)中的人為因素作用力”會議上,來自Google的Carrie J. Cai在“以人為本的工具,以解決AI在應(yīng)對醫(yī)療決策過程算法不完善”的討論中展示了她的獲獎作品,并聲稱機器學(xué)習(xí)技術(shù)在醫(yī)療決策中的使用會越來越多。

她開發(fā)了一個新系統(tǒng),使醫(yī)生能夠即時改進和修改病理圖像的搜索方式,以不斷提高其準(zhǔn)確性。

利用深度學(xué)習(xí)的視覺模型,在對新患者做出診斷時參考已知患者的醫(yī)學(xué)圖像(例如來自活檢的組織)是一種很有前途的方式。然而,在特定診斷期間準(zhǔn)確獲得醫(yī)生當(dāng)下所需的相似圖像對現(xiàn)有系統(tǒng)提出了巨大挑戰(zhàn),因為“意圖鴻溝”(intention gap)的存在,即難以捕獲醫(yī)生的準(zhǔn)確意圖。這個問題我們稍后會詳細(xì)討論。

Cai的研究展示了他們在醫(yī)學(xué)圖像檢索系統(tǒng)上開發(fā)的細(xì)化工具能夠如何提高圖像的診斷準(zhǔn)確性。更重要的是,增加了醫(yī)生對機器學(xué)習(xí)算法輔助醫(yī)學(xué)決策的信任度。此外,調(diào)查結(jié)果顯示醫(yī)生能夠理解算法背后的優(yōu)點和缺點,自己發(fā)現(xiàn)并修正系統(tǒng)出現(xiàn)的錯誤??傮w而言,醫(yī)療專家對AI系統(tǒng)協(xié)助醫(yī)學(xué)決策的未來持樂觀態(tài)度。

在這篇文章中,我們主要討論三個方面的問題,即:

基于內(nèi)容的圖像檢索系統(tǒng)的發(fā)展?fàn)顟B(tài)

深度學(xué)習(xí)技術(shù)在這些系統(tǒng)中的作用

討論它們的應(yīng)用和對醫(yī)療領(lǐng)域的影響

基于內(nèi)容的圖像檢索系統(tǒng)的發(fā)展?fàn)顟B(tài)

在過去二十年左右的時間里,由于網(wǎng)絡(luò)上可視化數(shù)據(jù)的可訪問性不斷增長,基于內(nèi)容的圖像檢索(CBIR)已經(jīng)成為計算機可視化研究的熱門領(lǐng)域?;谖谋镜膱D像搜索技術(shù)由于與視覺內(nèi)容的不匹配性而飽受詬病,因此將相似的視覺內(nèi)容進行排序在許多情況下都被認(rèn)為是很重要的。

Wengang Zhou等人指出了CBIR系統(tǒng)的兩個關(guān)鍵挑戰(zhàn),他們稱之為“意圖鴻溝(Intention Gap)”和“語義鴻溝(Semantic Gap)”。

圖1:來自Wengang Zhou等人的論文《基于內(nèi)容的圖像檢索的最新進展:文獻調(diào)查”》

所謂“意圖鴻溝”,即難以通過已有的數(shù)據(jù)庫理解用戶的確切意圖,如圖示中的關(guān)鍵字。這是Carrie J. Cai等人提出的。回顧之前的研究,通過示例圖像進行查詢似乎是最廣為探索的領(lǐng)域,原因顯然是因為通過圖像獲得豐富的查詢信息非常方便。但這需要從圖像中提取準(zhǔn)確的特征,因此需要我們進入下一個角度,即語義鴻溝。

語義鴻溝主要是指用低級視覺特征描述高級語義概念的困難。現(xiàn)在,經(jīng)過多年來的大量研究,這個問題已經(jīng)取得了一些顯著突破,例如引入不變的局部視覺特征(SIFT)和引入視覺詞袋(BoW)模型。

圖1展示了CBIR系統(tǒng)的兩個主要功能。匹配檢索理解和圖像特征之間的相似性,也是一個重要的步驟,但這完全取決于系統(tǒng)表達出查詢和圖像的匹配程度。

最近基于學(xué)習(xí)的特征提取器,例如深度卷積神經(jīng)網(wǎng)絡(luò)(CNN),爆炸式地開辟了許多新研究途徑,可以直接應(yīng)用于解決我們在CBIR系統(tǒng)中討論的語義鴻溝。這些技術(shù)相比人工輸入的特征提取器有了顯著改進,并且已經(jīng)在語義感知檢索應(yīng)用程序中顯示出了潛力。

機器學(xué)習(xí)扮演的角色

Carrie J. Cai等人分析了CBIR系統(tǒng)的基本細(xì)節(jié)。由Narayan Hedge等人詳細(xì)介紹了他們的研究——“組織病理學(xué)類似圖像搜索:SMILY”。系統(tǒng)概述如圖2所示。

卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法用于圖2所示的嵌入計算模塊,作為系統(tǒng)中的特征提取器。系統(tǒng)將圖像信息壓縮成數(shù)字特征向量(也稱為嵌入向量),通過預(yù)訓(xùn)練的CNN算法計算并存儲圖像數(shù)據(jù)庫(這里是病理載片上的片段圖像)及其數(shù)值向量,當(dāng)對圖像進行進行查詢檢索時,使用相同的CNN算法計算查詢輸入的圖像,并與數(shù)據(jù)庫中的向量進行比較以檢索最相似的圖像。

此外,Narayan Hedge等人解釋說,CNN架構(gòu)是基于Jiang Wang等人提出的深度排序網(wǎng)絡(luò),它由卷層和匯聚層以及連接操作組成。在網(wǎng)絡(luò)訓(xùn)練階段,輸入3組圖像:特定類的第一組參考圖像,同一類的第二組圖像和完全不同類的第三組圖像。然后對損失函數(shù)進行建模,使得網(wǎng)絡(luò)在嵌入相同類的圖像時賦值的距離比嵌入不同類圖像時更短。因此,來自不同類的圖像有助于增強來自同一類的圖像的嵌入之間的相似性。

他們使用大型自然圖像數(shù)據(jù)集(例如狗,貓,樹等)來訓(xùn)練網(wǎng)絡(luò)而不只是用病理圖像。在學(xué)會區(qū)分相似的自然圖像與不同的自然圖像之后,再將相同的訓(xùn)練架構(gòu)直接應(yīng)用于病理圖像的特征提取上。這種方式被視為有限數(shù)據(jù)的應(yīng)用中的神經(jīng)網(wǎng)絡(luò)加強版,通常稱為轉(zhuǎn)移學(xué)習(xí)。

Narayan Hedge等人表示CNN特征提取器為每個圖像設(shè)置了128個大小不一的向量,并且選擇L2距離作為向量之間的比較函數(shù)。使用t-SNE可視化技術(shù)將病理圖像載玻片上產(chǎn)生的所有數(shù)據(jù)集嵌入。如圖3所示:(a)器官位點著色的嵌入 (b)由組織學(xué)特征著色的嵌入。

圖3:來自由Narayan Hedge等人的的研究論文“類似圖像搜索組織病理學(xué):SMILY”

事實上,類似的深度排名網(wǎng)絡(luò)架構(gòu)和訓(xùn)練技術(shù)可以在諸如Siamese Neural Networks等深度學(xué)習(xí)文獻中廣泛使用,甚至已經(jīng)應(yīng)用于人臉識別中。

現(xiàn)在,回到CBIR系統(tǒng),我們了解到深度學(xué)習(xí)技術(shù)可以減少語義鴻溝,這些基于深度學(xué)習(xí)的方法即使在復(fù)雜的自然圖像中也可以識別重要特征。

在醫(yī)療領(lǐng)域中的應(yīng)用與沖擊

到目前為止,我們研究了CBIR系統(tǒng)的應(yīng)用以及深度學(xué)習(xí)技術(shù)在克服語義鴻溝等方面的潛力。但CBIR在醫(yī)療方面的適用性如何?我們能否明確量化其影響呢?

僅在2002年,日內(nèi)瓦大學(xué)醫(yī)院的放射科每天就產(chǎn)生超過12,000張圖像。其中,心血管科是第二大數(shù)字圖像制造者。醫(yī)療信息系統(tǒng)的目標(biāo)應(yīng)該是“在適當(dāng)?shù)臅r間地點為正確的人提供其所需的合適信息,以提高治療過程的質(zhì)量和效率。”因此,在臨床決策中,基于案例的推理或基于證據(jù)的醫(yī)學(xué)決策都希望從CBIR系統(tǒng)中受益。

無論技術(shù)多么健全,這些系統(tǒng)在實際臨床應(yīng)用中都需要更多的完善,特別是在建立系統(tǒng)與醫(yī)生間的信任方面。這是Carrie J. Cai等人的提出的,醫(yī)生通過非常靈活地使用相關(guān)性反饋來完善系統(tǒng),即對得到的系統(tǒng)結(jié)果進行評級。HenningMüller等人還申明了相關(guān)反饋在交互式環(huán)境中的重要性,其用來改善系統(tǒng)結(jié)果并提高CBIR系統(tǒng)的適應(yīng)性。

另一個重點是量化這些系統(tǒng)的影響,這對于這一研究領(lǐng)域的適應(yīng)和發(fā)展至關(guān)重要。在與12位病理學(xué)家一同進行用戶研究后,Carrie J. Cai等人聲稱,通過他們的CBIR系統(tǒng),醫(yī)生能夠更輕松地增加系統(tǒng)的診斷效用。此外,結(jié)果也顯示醫(yī)生對其信任度的提高了也增大了將來用于臨床實踐的可能性。但是在本研究中沒有評估診斷準(zhǔn)確性(盡管經(jīng)驗表明其保持不變),因為它超出了研究范圍。

展望未來,很明顯,醫(yī)療專家和AI系統(tǒng)開發(fā)人員需要不斷協(xié)作,以確定范例并評估AI應(yīng)用程序在醫(yī)療中的影響。此外,科研界也應(yīng)重點關(guān)注開放測試數(shù)據(jù)集和查詢標(biāo)準(zhǔn)的開發(fā),以便為CBIR系統(tǒng)設(shè)置基準(zhǔn),這些對于推動研究向前發(fā)展非常有幫助。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1805

    文章

    48843

    瀏覽量

    247402
  • 智能醫(yī)療
    +關(guān)注

    關(guān)注

    27

    文章

    1388

    瀏覽量

    75024

原文標(biāo)題:如果能理解醫(yī)生的準(zhǔn)確意圖,深度學(xué)習(xí)會是醫(yī)療診斷的未來嗎?

文章出處:【微信號:BigDataDigest,微信公眾號:大數(shù)據(jù)文摘】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 0人收藏

    評論

    相關(guān)推薦
    熱點推薦

    亥步多模態(tài)醫(yī)療大模型發(fā)布:人工智能引領(lǐng)醫(yī)療新紀(jì)元

    當(dāng)下,人工智能(AI)正以不可阻擋之勢滲透到各行各業(yè),包括醫(yī)療行業(yè)。12月14日,2024中國醫(yī)學(xué)人工智能大會的召開。會上,一款名為“亥步”的多模態(tài)醫(yī)療大模型的正式發(fā)布。
    的頭像 發(fā)表于 12-19 17:56 ?507次閱讀

    人工智能應(yīng)用領(lǐng)域及未來展望

    來源: 在當(dāng)今科技飛速發(fā)展的時代,人工智能無疑是最受矚目的領(lǐng)域之一。它正以前所未有的速度改變著我們的生活、工作和社會。 ? 一、人工智能的崛起 ? 人工智能的發(fā)展可以追溯到幾十年前,但
    的頭像 發(fā)表于 12-07 11:29 ?1495次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    領(lǐng)域,如工業(yè)控制、智能家居、醫(yī)療設(shè)備等。 人工智能是計算機科學(xué)的一個分支,它研究如何使計算機具備像人類一樣思考、學(xué)習(xí)、推理和決策的能力。人工智能的發(fā)展歷程可以追溯到上世紀(jì)50年代,經(jīng)
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學(xué)領(lǐng)域中的巨大潛力和廣泛應(yīng)用。這一章詳細(xì)
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運社區(qū)給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和深遠影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第一章人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    周末收到一本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內(nèi)容詳實,干活滿滿。 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》這本書的第一章,作為整個著作的開篇
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    是一些未來發(fā)展趨勢: 市場規(guī)模持續(xù)增長 :據(jù)多家研究機構(gòu)和公司的預(yù)測,RISC-V的市場規(guī)模將持續(xù)增長。到2030年,RISC-V處理器有望占據(jù)全球市場近四分之一的份額。這將為RISC-V在人工智能
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學(xué) 不過好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結(jié)經(jīng)驗,擬按照要求準(zhǔn)備相關(guān)體會材料??茨芊裼兄谌腴T和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能將如何
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領(lǐng)域集產(chǎn)品
    發(fā)表于 08-22 15:00

    利用人工智能改變 PCB 設(shè)計

    人工智能在PCB設(shè)計中展現(xiàn)出不可否認(rèn)的潛力,但是工程師們自然對其影響有所顧慮。關(guān)于工作保障和責(zé)任的等問題常常浮現(xiàn):人工智能會奪走我的工作嗎?如果人工智能出錯,我會被指責(zé)嗎?然而,人工智能
    的頭像 發(fā)表于 08-15 10:38 ?857次閱讀
    利用<b class='flag-5'>人工智能</b><b class='flag-5'>改變</b> PCB 設(shè)計

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    人工智能如何改變著各行各樣

    人工智能的風(fēng)起云涌,幾乎顛覆了千行百業(yè)創(chuàng)新的節(jié)奏,今天的人工智能就如同揮舞著“指揮棒”一樣,改變著各行各樣本來的“模樣”。
    的頭像 發(fā)表于 07-19 10:58 ?817次閱讀
    <b class='flag-5'>人工智能</b>如何<b class='flag-5'>改變</b>著各行各樣

    人工智能的工作原理和特點

    在科技日新月異的今天,人工智能(Artificial Intelligence,簡稱AI)已成為一個炙手可熱的話題。從智能家居到自動駕駛,從醫(yī)療診斷到金融服務(wù),人工智能的身影無處不在,
    的頭像 發(fā)表于 07-01 11:39 ?3080次閱讀
    主站蜘蛛池模板: 超碰97人人做人人爱亚洲尤物 | 国产成人小视频在线观看 | 中文字幕高清在线中文字幕 | 果冻传媒2021精品在线观看 | 国产人妻人伦精品久久无码 | 爆操日本美女 | 秋霞网在线伦理免费 | YELLOW免费观看完整视频 | 成年视频国产免费观看 | 掀开奶罩边躁狠狠躁软学生 | 九九久久久2 | 国产女人与黑人在线播放 | 欧美性爱 先锋影音 | 成人伊人青草久久综合网 | 久久精品国产色蜜蜜麻豆国语版 | av在线观看地址 | 久久综合中文字幕无码 | 女人被躁到高潮嗷嗷叫69 | 欧美精品专区第1页 | 亚洲精品久久久久久久蜜臀老牛 | 中文字幕无码乱人伦蜜桃 | 蜜芽丅v新网站在线观看 | 精品国产原创在线观看视频 | 日欧一片内射VA在线影院 | 亚洲视频免费观看 | 夜夜狂射影院欧美极品 | 国产亚洲美女在线视频视频 | 男人狂躁进女人免费视频公交 | 色 花 堂 永久 网站 | 国产欧美第一页 | 国产成人免费高清激情视频 | 久久草福利自拍视频在线观看 | 日本女人水多 | 性欧美videofree中文字幕 | 久热久热精品在线观看 | 777EY_卡通动漫_1页 | 果冻传媒2021一二三在线观看 | 与邻居换娶妻子2在线观看 瑜伽牲交AV | 免费在线视频a | 无止侵犯高H1V3无止侵犯 | 日韩一区精品视频一区二区 |

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學(xué)習(xí)
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品