色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于人臉識(shí)別技術(shù)原理分析和應(yīng)用

M93f_興芯微 ? 來(lái)源:djl ? 2019-08-26 11:42 ? 次閱讀

近年來(lái),隨著安防行業(yè)的不斷向前發(fā)展,智能化是未安防行業(yè)發(fā)展的一大發(fā)展趨勢(shì)。所謂人臉識(shí)別技術(shù),即基于人的臉部特征,對(duì)輸入的人臉圖象或者視頻流進(jìn)行判斷,首先判斷其是否存在人臉。如果存在人臉,則進(jìn)一步的給出每個(gè)臉的位置、大小和各個(gè)主要面部器官的位置信息。并依據(jù)這些信息,進(jìn)一步提取每個(gè)人臉中所蘊(yùn)涵的身份特征,并將其與已知的人臉進(jìn)行對(duì)比,從而識(shí)別每個(gè)人臉的身份。

人臉識(shí)別技術(shù)原理分析

人臉由于其易采集的特性,受到很多行業(yè)客戶(hù)的關(guān)注,特別是公安、海關(guān)、商場(chǎng)等。人類(lèi)每天都在進(jìn)行人臉識(shí)別,因此也最能接受這種身份認(rèn)證方式。人臉識(shí)別的研究始于上世紀(jì)中期,經(jīng)歷了數(shù)十年的努力,現(xiàn)在已經(jīng)可以應(yīng)用在我們的實(shí)際生活中,為我們提供各種便利。

人臉識(shí)別主要分為人臉檢測(cè)(face detection)、特征提取(feature extraction)和人臉識(shí)別(face recognition)三個(gè)過(guò)程.

人臉檢測(cè):人臉檢測(cè)是指從輸入圖像中檢測(cè)并提取人臉圖像,通常采用haar特征和Adaboost算法 訓(xùn)練級(jí)聯(lián)分類(lèi)器對(duì)圖像中的每一塊進(jìn)行分類(lèi)。如果某一矩形區(qū)域通過(guò)了級(jí)聯(lián)分類(lèi)器,則被判別為人臉圖像。

特征提取:特征提取是指通過(guò)一些數(shù)字來(lái)表征人臉信息,這些數(shù)字就是我們要提取的特征。常見(jiàn)的人臉特征分為兩類(lèi),一類(lèi)是幾何特征,另一類(lèi)是表征特征。幾何特征是指眼睛、鼻子和嘴等面部特征之間的幾何關(guān)系,如距離、面積和角度等。由于算法利用了一些直觀的特征,計(jì)算量小。不過(guò),由于其所需的特征點(diǎn)不能精確選擇,限制了它的應(yīng)用范圍。另外,當(dāng)光照變化、人臉有外物遮擋、面部表情變化時(shí),特征變化較大。所以說(shuō),這類(lèi)算法只適合于人臉圖像的粗略識(shí)別,無(wú)法在實(shí)際中應(yīng)用。

表征特征利用人臉圖像的灰度信息,通過(guò)一些算法提取全局或局部特征。其中比較常用的特征提取算法是LBP算法。LBP方法首先將圖像分成若干區(qū)域,在每個(gè)區(qū)域的像素640x960鄰域中用中心值作閾值化,將結(jié)果看成是二進(jìn)制數(shù)。圖3顯示了一個(gè)LBP算子。LBP算子的特點(diǎn)是對(duì)單調(diào)灰度變化保持不變。每個(gè)區(qū)域通過(guò)這樣的運(yùn)算得到一組直方圖,然后將所有的直方圖連起來(lái)組成一個(gè)大的直方圖并進(jìn)行直方圖匹配計(jì)算進(jìn)行分類(lèi)。

人臉識(shí)別:這里提到的人臉識(shí)別是狹義的人臉識(shí)別,即將待識(shí)別人臉?biāo)崛〉奶卣髋c數(shù)據(jù)庫(kù)中人臉的特征進(jìn)行對(duì)比,根據(jù)相似度判別分類(lèi)。而人臉識(shí)別又可以分為兩個(gè)大類(lèi):一類(lèi)是確認(rèn),這是人臉圖像與數(shù)據(jù)庫(kù)中已存的該人圖像比對(duì)的過(guò)程,回答你是不是你的問(wèn)題;另一類(lèi)是辨認(rèn),這是人臉圖像與數(shù)據(jù)庫(kù)中已存的所有圖像匹配的過(guò)程,回答你是誰(shuí)的問(wèn)題。顯然,人臉辨認(rèn)要比人臉確認(rèn)困難,因?yàn)楸嬲J(rèn)需要進(jìn)行海量數(shù)據(jù)的匹配。常用的分類(lèi)器有最近鄰分類(lèi)器、支持向量機(jī)等。

與指紋應(yīng)用方式類(lèi)似,人臉識(shí)別技術(shù)目前比較成熟的也是考勤機(jī)。因?yàn)樵诳记谙到y(tǒng)中,用戶(hù)是主動(dòng)配合的,可以在特定的環(huán)境下獲取符合要求的人臉。這就為人臉識(shí)別提供了良好的輸入源,往往可以得到滿(mǎn)意的結(jié)果。但是在一些公共場(chǎng)所安裝的視頻監(jiān)控探頭,由于光線、角度問(wèn)題,得到的人臉圖像很難比對(duì)成功。這也是未來(lái)人臉識(shí)別技術(shù)發(fā)展必須要解決的難題之一。

現(xiàn)在已有一些機(jī)構(gòu)、高校在進(jìn)行人臉識(shí)別新領(lǐng)域、新技術(shù)的研究。如遠(yuǎn)距離人臉識(shí)別技術(shù),3D人臉識(shí)別技術(shù)等。遠(yuǎn)距離人臉識(shí)別系統(tǒng)面臨兩個(gè)主要困難。一是如何從遠(yuǎn)距離獲取人臉圖像。其次,在得到的數(shù)據(jù)并不理想的情況下如何識(shí)別身份。從某種意義上來(lái)看,遠(yuǎn)距離人臉識(shí)別并不是一個(gè)特定的關(guān)鍵技術(shù)或基礎(chǔ)研究問(wèn)題。它可看成是一個(gè)應(yīng)用和系統(tǒng)設(shè)計(jì)問(wèn)題。通常有兩類(lèi)解決方法用于獲取人臉圖片。一種是高清的固定式攝像機(jī),另一種是使用PTZ控制系統(tǒng)多攝像機(jī)系統(tǒng)。后者更適合于一般情況,不過(guò)其結(jié)構(gòu)更為復(fù)雜,造價(jià)也更貴。后者需要考慮如何協(xié)調(diào)多臺(tái)攝像機(jī)的同步操作。一般地,系統(tǒng)由低分辨率廣角攝像機(jī)和高分辨率長(zhǎng)焦攝像機(jī)組成。前者用于檢測(cè)和追蹤目標(biāo),后者用于人臉圖像采集和識(shí)別。目前遠(yuǎn)距離人臉識(shí)別技術(shù)還處于實(shí)驗(yàn)室階段,未來(lái)如果能夠解決上述問(wèn)題,對(duì)人員布控這樣的應(yīng)用有著重要意義。

3D人臉識(shí)別能夠很好地克服2D人臉識(shí)別遇到的姿態(tài)、光照、表情等問(wèn)題。主要原因是2D圖像無(wú)法很好地表示深度信息。通常,3D人臉識(shí)別方法使用3D掃描技術(shù)獲取3D人臉,然后建立3D人臉模型并用于識(shí)別。不過(guò),3D人臉識(shí)別技術(shù)的缺點(diǎn)也是很明顯的。首先它需要額外的3D采集設(shè)備或雙目立體視覺(jué)技術(shù),其次,建模過(guò)程需要的計(jì)算量較大。相信隨著未來(lái)芯片技術(shù)的發(fā)展,當(dāng)計(jì)算能力不再受到制約,采集設(shè)備成本大幅下降的時(shí)候,3D人臉識(shí)別將會(huì)成為熱門(mén)技術(shù)之一。

人臉識(shí)別在應(yīng)用中的挑戰(zhàn)

從實(shí)際測(cè)試來(lái)看,用戶(hù)的預(yù)期與當(dāng)前的技術(shù)水平之間的差距還是比較大的。人臉識(shí)別技術(shù)在動(dòng)態(tài)監(jiān)控應(yīng)用中面臨的壓力實(shí)際上也比較大。

1.用戶(hù)希望正確報(bào)警率要求高。而現(xiàn)實(shí)是理論上來(lái)說(shuō)必須接受高誤報(bào)率。在技術(shù)方面,要達(dá)到高正確報(bào)警率,可以通過(guò)降低閾值來(lái)實(shí)現(xiàn),但是降低閾值的代價(jià)是:高誤報(bào)率。為了達(dá)到95%正確報(bào)警率,很多算法可能會(huì)產(chǎn)生300%或更高的誤報(bào)率。

2.用戶(hù)希望監(jiān)控庫(kù)足夠大,往往要求數(shù)萬(wàn)或幾十萬(wàn),甚至上百萬(wàn)的監(jiān)控名單,希望能捕到“大魚(yú)”。現(xiàn)實(shí)是庫(kù)容量大就必須接受高誤報(bào)率。

3. 用戶(hù)希望大規(guī)模成網(wǎng)建設(shè),能夠勾畫(huà)出監(jiān)控人員的活動(dòng)軌跡。 現(xiàn)實(shí)是必須高投入,重新建專(zhuān)用網(wǎng)絡(luò)和相關(guān)硬件

4. 用戶(hù)希望盡量使用目前的監(jiān)控設(shè)備(攝像機(jī)和網(wǎng)絡(luò))。 現(xiàn)實(shí)是現(xiàn)有的攝像機(jī)清晰度不夠,圖像質(zhì)量差,用于場(chǎng)景監(jiān)控時(shí)視頻中人臉過(guò)小,網(wǎng)絡(luò)帶寬不夠等等造成無(wú)法使用現(xiàn)有設(shè)備。

5. 用戶(hù)希望少產(chǎn)生誤報(bào)甚至不產(chǎn)生誤報(bào)。 現(xiàn)實(shí)是這樣就必將損失正確報(bào)警率和減少監(jiān)控庫(kù)容量,與用戶(hù)的想法相違。

6.光照問(wèn)題

面臨各種環(huán)境光源的考驗(yàn),可能出現(xiàn)側(cè)光、頂光、背光和高光等現(xiàn)象,而且有可能出現(xiàn)各個(gè)時(shí)段的光照不同,甚至在監(jiān)控區(qū)域內(nèi)各個(gè)位置的光照都不同。

7. 人臉姿態(tài)和飾物問(wèn)題

因?yàn)楸O(jiān)控是非配合型的,監(jiān)控人員通過(guò)監(jiān)控區(qū)域時(shí)以自然的姿態(tài)通過(guò),因此可能出現(xiàn)側(cè)臉、低頭、抬頭等的各種非正臉的姿態(tài)和佩戴帽子、黑框眼鏡、口罩等飾物現(xiàn)象。

8. 攝像機(jī)的圖像問(wèn)題

攝像機(jī)很多技術(shù)參數(shù)影響視頻圖像的質(zhì)量,這些因素有感光器(CCD、CMOS)、感光器的大小、DSP的處理速度、內(nèi)置圖像處理芯片和鏡頭等,同時(shí)攝像機(jī)內(nèi)置的一些設(shè)置參數(shù)也將影響視頻質(zhì)量,如曝光時(shí)間、光圈、動(dòng)態(tài)白平衡等參數(shù)。

9.丟幀和丟臉問(wèn)題

需要的網(wǎng)絡(luò)識(shí)別和系統(tǒng)的計(jì)算識(shí)別可能會(huì)造成視頻的丟幀和丟臉現(xiàn)象,特別是監(jiān)控人流量大的區(qū)域,由于網(wǎng)絡(luò)傳輸?shù)膸拞?wèn)題和計(jì)算能力問(wèn)題,常常引起丟幀和丟臉。

OpenCV是Intel公司支持的開(kāi)源計(jì)算機(jī)視覺(jué)庫(kù)。它輕量級(jí)而且高效--由一系列 C 函數(shù)和少量 C++ 類(lèi)構(gòu)成,實(shí)現(xiàn)了圖像處理和計(jì)算機(jī)視覺(jué)方面的很多通用算法,作為一個(gè)基本的計(jì)算機(jī)視覺(jué)、圖像處理和模式識(shí)別的開(kāi)源項(xiàng)目,OpenCV 可以直接應(yīng)用于很多領(lǐng)域,其中就包括很多可以應(yīng)用于人臉識(shí)別的算法實(shí)現(xiàn),是作為第二次開(kāi)發(fā)的理想工具。

1 系統(tǒng)組成

人臉識(shí)別系統(tǒng)可以在Linux 操作系統(tǒng)下利用QT庫(kù)來(lái)開(kāi)發(fā)圖形界面,以O(shè)penCV 圖像處理庫(kù)為基礎(chǔ),利用庫(kù)中提供的相關(guān)功能函數(shù)進(jìn)行各種處理:通過(guò)相機(jī)對(duì)圖像數(shù)據(jù)進(jìn)行采集,人臉檢測(cè)主要是調(diào)用已訓(xùn)練好的Haar 分類(lèi)器來(lái)對(duì)采集的圖像進(jìn)行模式匹配,檢測(cè)結(jié)果利用PCA 算法可進(jìn)行人臉圖像訓(xùn)練與身份識(shí)別,而人臉表情識(shí)別則利用了Camshift 跟蹤算法和Lucas–Kanade 光流算法。

2 搭建開(kāi)發(fā)環(huán)境

采用德國(guó)Basler acA640-100gc 相機(jī),PC 機(jī)上的操作系統(tǒng)是Fedora 10,并安裝編譯器GCC4.3,QT 4.5和OpenCV2.2 軟件工具包,為了處理視頻,編譯OpenCV 前需編譯FFmpeg,而FFmpeg 還依賴(lài)于Xvid庫(kù)和X264 庫(kù)。

3 應(yīng)用系統(tǒng)開(kāi)發(fā)

程序主要流程如圖所示。

關(guān)于人臉識(shí)別技術(shù)原理分析和應(yīng)用

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人臉識(shí)別
    +關(guān)注

    關(guān)注

    76

    文章

    4011

    瀏覽量

    81867
  • 計(jì)算機(jī)視覺(jué)

    關(guān)注

    8

    文章

    1698

    瀏覽量

    45984
  • 光流法
    +關(guān)注

    關(guān)注

    0

    文章

    3

    瀏覽量

    7863
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    關(guān)于人臉和車(chē)輛識(shí)別技術(shù)方案

    人臉識(shí)別[,特指利用分析比較人臉視覺(jué)特征信息進(jìn)行身份鑒別的計(jì)算機(jī)技術(shù)人臉
    的頭像 發(fā)表于 12-23 08:12 ?1.1w次閱讀

    【TL6748 DSP申請(qǐng)】基于DSP的人臉識(shí)別技術(shù)

    、聲音識(shí)別人臉識(shí)別技術(shù)更加的直接、友好、方便,具有很大的發(fā)展?jié)摿Αm?xiàng)目描述:1.深入研究Adaboost算法原理2.對(duì)人臉
    發(fā)表于 09-10 11:17

    奇谷人臉識(shí)別技術(shù)

    覆蓋,安全問(wèn)題不再是問(wèn)題,一個(gè)強(qiáng)大的國(guó)家從不會(huì)停止發(fā)展的腳步,只會(huì)迎難而上,激流勇進(jìn)。奇谷人臉識(shí)別致力于人臉識(shí)別、車(chē)輛識(shí)別
    發(fā)表于 06-22 15:01

    人臉識(shí)別的研究范圍和優(yōu)勢(shì)

    ,并加以歸類(lèi)。5.生理分類(lèi),對(duì)待識(shí)別的人臉的生理特征進(jìn)行分析,得出種族、年齡、性別、職業(yè)等相關(guān)信息。人臉識(shí)別技術(shù)的優(yōu)勢(shì):作為利用生物
    發(fā)表于 06-29 11:52

    人臉識(shí)別技術(shù)在安防領(lǐng)域的發(fā)展?fàn)顩r

    現(xiàn)狀伴隨著智慧城市的建設(shè)進(jìn)程加快,各種安防設(shè)備和技術(shù)手段隨處可見(jiàn),特別是人臉技術(shù)法展迅速。比較以往的行業(yè)應(yīng)用來(lái)說(shuō),智能分析識(shí)別從后臺(tái)報(bào)警慢慢
    發(fā)表于 07-28 13:57

    人臉識(shí)別技術(shù)的60年發(fā)展史

    和統(tǒng)計(jì)特征技術(shù)引入人臉識(shí)別,在實(shí)用效果上取得了長(zhǎng)足的進(jìn)步。這一思路也在后續(xù)研究中得到進(jìn)一步發(fā)揚(yáng)光大,例如,Belhumer成功將Fisher判別準(zhǔn)則應(yīng)用于人臉分類(lèi),提出了基于線性判別
    發(fā)表于 06-20 13:29

    什么是人臉識(shí)別技術(shù)

    什么是人臉識(shí)別技術(shù)人臉識(shí)別技術(shù)特點(diǎn)人臉
    發(fā)表于 03-03 06:17

    人臉識(shí)別技術(shù)入門(mén)資料

    應(yīng)用模式識(shí)別技術(shù)導(dǎo)論 人臉識(shí)別與語(yǔ)音識(shí)別
    發(fā)表于 11-23 22:36

    人臉識(shí)別幾種解決方案的對(duì)比_人臉識(shí)別技術(shù)原理介紹

    本文主要介紹人臉識(shí)別特點(diǎn)、對(duì)人臉識(shí)別技術(shù)的原理進(jìn)行了詳細(xì)的分析,其次說(shuō)明了
    發(fā)表于 01-02 16:38 ?8w次閱讀
    <b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>幾種解決方案的對(duì)比_<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b><b class='flag-5'>技術(shù)</b>原理介紹

    人臉識(shí)別是什么_人臉識(shí)別技術(shù)原理

    人臉識(shí)別是什么,人臉識(shí)別技術(shù)原理是如何的,它又是若何一步步實(shí)現(xiàn)的,人臉
    發(fā)表于 09-27 15:49 ?5829次閱讀
    <b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>是什么_<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b><b class='flag-5'>技術(shù)</b>原理

    關(guān)于人臉識(shí)別技術(shù)應(yīng)用的簡(jiǎn)單分析

    大數(shù)據(jù)時(shí)代的崛起,推動(dòng)了人臉識(shí)別的熱潮。從2014年逐步開(kāi)始應(yīng)用到目前“刷臉”時(shí)代的來(lái)臨。人臉識(shí)別的應(yīng)用領(lǐng)域逐步擴(kuò)散。本文將帶您了解人臉
    發(fā)表于 12-06 16:19 ?1223次閱讀

    人臉識(shí)別技術(shù)的原理是什么?

    人臉識(shí)別技術(shù)的原理是什么? 目前人臉識(shí)別解鎖、人臉識(shí)別
    發(fā)表于 12-06 17:52 ?6874次閱讀

    人臉識(shí)別是如何工作的 人臉識(shí)別技術(shù)的利與弊

    人臉識(shí)別是一種生物識(shí)別技術(shù),通過(guò)對(duì)人臉圖像或視頻進(jìn)行分析和比對(duì),識(shí)別出人臉的身份。下面是簡(jiǎn)要的工
    發(fā)表于 06-30 15:02 ?1420次閱讀

    人臉識(shí)別技術(shù)的原理是什么 人臉識(shí)別技術(shù)的特點(diǎn)有哪些

    人臉識(shí)別技術(shù)的原理 人臉識(shí)別技術(shù)是一種通過(guò)計(jì)算機(jī)以圖像或視頻為輸入,
    的頭像 發(fā)表于 02-18 13:52 ?1880次閱讀

    人臉識(shí)別技術(shù)的原理介紹

    人臉識(shí)別技術(shù)是一種基于人臉特征信息進(jìn)行身份識(shí)別的生物識(shí)別技術(shù)。它通過(guò)
    的頭像 發(fā)表于 07-04 09:22 ?1153次閱讀
    主站蜘蛛池模板: 激情丛林电影完整在线| 中文字幕在线永久| 国产日韩精品一区二区在线观看| 色欲精品久久人妻AV中文字幕| 丰满大爆乳波霸奶| 国产成人精品亚洲线观看| 日本一区二区三区在线观看网站 | 好男人好资源在线观看| 亚洲精品久久久久久偷窥| 国语自产一区视频| 一本色道久久综合亚洲精品蜜桃冫| 国产 高清 无码 中文| 桃色园社区| 国产人成精品综合欧美成人| 亚洲不卡视频| 久久99精品国产自在自线| 亚洲AV无码一区二区三区乱子伦| 国产在线成人一区二区三区| 亚洲无线观看国产| 国精产品砖一区二区三区糖心| 亚洲视频在线观看地址| 久草在线一免费新视频| 中文字幕一区在线观看视频| 女人高潮了拔出来了她什么感觉| 在线观看国产高清免费不卡| 美女xx00| 成人AV精品视频| 热99RE久久精品国产| 国产99久久九九精品无码不卡| 亚洲AV精品无码国产一区| 国产盗摄TP摄像头偷窥| 亚洲国产精品嫩草影院| 久久精品电影院| 99视频在线免费| 思思久久99热只有频精品66| 国产在线观看不卡| 中文字幕高清在线观看| 日韩成人在线视频| 国语自产精品一区在线视频观看 | 精品午夜寂寞影院在线观看| 亚洲男同tv|