色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

讓特殊工藝在 5G LNA 中發揮最大效用

丫丫119 ? 來源:未知 ? 作者:肖冰 ? 2019-08-21 09:12 ? 次閱讀

隨著 5G 無線網絡不斷發展,無線電前端的性能在射頻接收器信號路徑中扮演著越來越關鍵的角色,對于低噪聲放大器 (LNA) 尤其如此。隨著適用于 LNA 的新型工藝技術(例如硅鍺 (SiGe)、砷化鎵 (GaAs) 和絕緣硅片 (SOI))的出現,設計人員必須重新評估 LNA 參數(例如噪聲、靈敏度、帶寬和功率)的性能權衡,以便有效地使用這些工藝技術。

前端的重要性無論怎樣強調都不過分,因為它在很大程度上決定了系統在弱信號情況下的最終性能以及可實現的誤碼率。如果 LNA 的性能不合要求,為滿足 5G 性能要求而在電路和接收通道管理方面做出的其余設計努力都將收效甚微。

本文將討論 5G 的現狀及其對 LNA 性能的要求。隨后,本文將介紹采用最新工藝并有助于滿足這些要求的解決方案,以及如何充分利用這些解決方案。

5G 現狀簡述

任重道遠,但已邁出堅實的步伐:盡管 5G 的規格已經最終敲定,但仍在逐步完善中。5G 很多令人向往的特性尚待定奪,還需要更多的會議探討和現場試驗,并征求元器件供應商和無線運營商的意見。

不過,一些問題已經昭然若揭:5G 設計將會占用新的電磁波譜塊,但一些初始實施仍將低于 6 千兆赫 (GHz)。大多數 5G 系統將在毫米波頻帶運行,在美國可使用 27 到 28 GHz 和 37 到 40 GHz 頻帶。一些初步分配的頻帶甚至高于 50 GHz。由于存在技術挑戰,第一批毫米波實施將使用 27 到 28 GHz 頻帶。

LNA 的具體作用

盡管 5G 規格提供了很多調制、功率、數據速率選項及其他一些功能,但通常它們大多與接收通道 LNA 關系不大。此元器件必須勝任一項任務,即捕獲并放大來自天線且被噪聲破壞的微弱信號,同時盡量減少增加的噪聲。因此,仔細研究 LNA 本身,而不是過度關注持續演化的更高層面的規格問題,才是明智之舉。

要在指定頻帶內實現可接受的運行,主要的 LNA 規格是噪聲系數 (NF),即由 LNA 增加的固有噪聲量。對于 5G,尤其是接近 28 GHz 頻帶時,NF 通常需要介于 1 到 3 dB 之間,某些情況下,再高 1 到 2 dB 的噪聲也是可以接受的。(請參閱“我知道噪聲系數,但噪聲怎么會有“溫度”呢?”,了解關于一些更常見的噪聲系數的深入討論。)通常需要介于 15 到 20 dB 之間的增益,才能將收到的信號升壓到可被后續的放大器、濾波器和數字化正確處理的范圍。

最后,1 dB 輸出壓縮點(被稱為 OP1 或 P1dB)和輸出三階交調點(OIP3) 的線性度相關系數分別需要至少為 -20 和 -35 dBm。在更低的 5G 頻帶,對于 OP1 和 OIP3 的這些要求則不那么嚴格,其中 OP1 為 -20 dBm 范圍內,OIP3 為 -10 到 -15 dBm。請注意,負值越大,表示性能越高(-25 dBm 要優于 -20 dBm),但很多規格書會省略負號,這樣會造成混淆。

從功能上看,LNA 只是很“簡單”的放大器,具有非常基本的框圖 - 通常只是一個放大器三角形 - 而且只需要幾條封裝引線(通常是 6 到 8 條)。這種簡化設計的結果是,它們的封裝很小,每側的尺寸約為 1 到 2 毫米,很多封裝的尺寸甚至更小。

新工藝推動 LNA 向 5G 應用邁進

許多高性能 LNA 專為幾 GHz 的低頻率(例如 2.4 GHz 和 5 GHz 頻帶)量身定制,但它們不符合 5G 前端的嚴格要求。由于硅基 LNA 似乎已經達到它們的性能極限,因此各廠商紛紛使用更新的半導體材料和工藝來滿足多種 5G 性能規格的嚴格要求。即使在較低的 5G 頻帶,標準硅也不具備足以滿足 5G 要求的低噪聲系數和高 OP1/OIP3 等級,因為它的發送和接收信號電平要低于現有的無線標準。

由于這些原因,供應商在基于 SiGe、SOI 和砷化鎵 (GaAs) 材料的新工藝的研發和量產方面投入巨資,因為這些新工藝可提供更高的電子遷移率、更小的幾何尺寸和更少的泄漏。

例如,Infineon Technologies的 BGA8U1BN6LNA 采用 SiGe 工藝,噪聲系數僅為 1.6 dB,其 OP1 介于 18 到 22 dBm 之間,OIP3 介于 10 到 15 dBm 之間。它在 4 到 6 GHz 的頻帶運行,增益為 13.7 dB。

此外,BGA8U1BN6 還提供了省電功能,激活此功能后,它可以進入旁通模式,只需要將輸入信號傳遞到輸出便可,插入損耗僅為 7.5 dB(圖 1)。當接收的信號強度較高時,此功能非常有用,因為它既能防止下一級過載,還能將 2.8 伏電源的 LNA 供電電流從大約 20 毫安 (mA) 減小至大約 100 微安 (μA),實現大幅的能耗節省。

圖 1:Infineon Technologies 的 SiGe BGA8U1BN6 LNA 包含旁通模式,此模式將 LNA 從信號路徑中剔除;這樣既減小了增益,防止后續各級出現過載和飽和,同時還降低了電流要求。(圖片來源:Infineon Technologies)

Skyworks Solutions的SKY65806-636LF也提供了旁通模式,是適用于 3400 到 3800 MHz 頻帶的 SOI LNA。它的增益與 Infineon 器件的增益相似,約為 13.6 dB,但噪聲系數僅為 1.2 dB。電源電壓范圍為 1.6 到 3.3 伏,工作電流僅為 3.85 mA。與 Infineon 的 LNA 一樣,這個電阻為 50 Ω 的 LNA 包含用戶控制的旁通功能。

Analog Devices推出的ADL5724 LNA也采用了 SiGe 工藝,可在 12.7 GHz 到 15.4 GHz 的頻帶運行(圖 2)。其 100 Ω 平衡差分輸出非常適合驅動差分下變頻器模數轉換器。典型增益大于 23.7 dB,典型噪聲系數在頻率為 12.7 GHz 和 15.4 GHz 時分別為 2.1 dB 和 2.4 dB。

圖 2:Analog Devices 的 SiGe ADL5724 提供平衡差分輸出,此輸出可支持在該器件與下一級信號鏈之間實現增強的信號完整性。(圖片來源:Analog Devices)

鑒于很多 LNA 通常不會部署到穩定的溫度環境中,因此 ADL5724 規格書附上了關鍵性能系數與溫度的關系圖(圖 3)。

圖 3:如圖所示為 -40?C、+25?C 和 +85?C 溫度下的 (a) 增益和 (b) 噪聲系數與頻率的關系圖,可見 LNA 的性能取決于溫度。請注意在噪聲系數隨著溫度的升高而增大時,增益是如何減小的。(圖片來源:Analog Devices)

對于 ADL5724,增益會隨著溫度的升高而稍稍減小,噪聲系數則會隨著溫度的升高而增大。這是 LNA 的典型表現,與工藝無關。設計人員需要在最壞情況建模和信號鏈性能模擬中考慮到這些變化。

為實現高動態范圍和低噪聲,MACOM Technology Solutions Holdings(MACOM) 推出了MAAL-011078,這是一種具有高動態范圍和超低噪聲系數的 GaAs 單級 LNA,其 2.6 GHz 頻率下的噪聲系數僅為 0.5 dB。它還提供了 22 dB 的增益以及 33 dBm (OIP3) 和 17.5 dBm (P1dB) 的高線性度。這款 IC 涵蓋了 700 MHz 到 6 GHz 頻帶,還具有一項額外特性:集成式有源偏置電路,因此用戶可通過外部電阻器設置自己的偏置(工作點)電流。這樣,用戶就能定制功耗以滿足應用需求。例如,針對較低的工作電流選擇較低的性能(圖 4)。

圖 4:用戶可利用 MACOM 的 MAAL-011078,通過外部電阻器來設置 LNA 偏置電流和工作點,藉由減小工作電流實現 OIP3 相對頻率的變化(左側)和 P1dB 性能相對頻率的下降(右側)。(圖片來源: MACOM)

讓 5G LNA 發揮最大效用

在為 5G 選擇合適的 LNA 之后,要實施 5G 前端設計,還需要考慮一些注意事項和通融措施,以便讓 LNA 發揮最大效用。隨著工作頻率跨越 5 GHz、10 GHz,除了 LNA 自身之外,還需要考慮五個重要因素。

1:選擇 PC 板材料- 在千兆赫范圍內,LNA 輸入和輸出的傳輸線路損耗是一個重要因素。在輸入端尤其如此,因為輸入端的傳輸線路損耗會降低可實現的最大信噪比,還會增大 LNA 的輸出噪聲。由于大多數設計中的傳輸線路都是作為帶狀線制作到 PC 板本身,因此電路板必須由低損耗的介電材料制成。

僅僅使用通用的 FR4 PCB 層壓板不足以保證這一點,因此供應商提供了多種替代材料和層壓材料。其中一種廣泛使用的電路板是在 FR4 核心上放置一種特殊的層壓材料,使傳輸線路具有穩定的損耗系數,并具有 FR4 加強板的基本強度。

請記住,在這些頻率下,必須將 PC 板視為電路設計中的另一個無源“元器件”,具有所有其他無源元器件一樣的寄生效應。此外,還必須考慮一些細節問題,例如電路板主要特征的溫度系數及其寄生效應。高性能 PC 板材料的供應商會提供這些數據。

2:選擇電容器– 對于輸入和輸出匹配電路,必須使用高 Q 值電容器,以降低流入和流出 LNA 的噪聲系數。低 Q 值元器件會導致噪聲系數降級 0.2 dB 到 1 dB 不等。廣泛使用的 NPO 電容器具有較低的 Q 值和較高的損耗,因此應避免使用。陶瓷電容器具有最高 Q 值,但它們價格昂貴。依靠性能和成本分析,可以找到一種滿意的折中方案。

3:電源旁路 -這一點雖然眾所周知,但經常被忽視,因此值得再三強調。必須細致、周到地在 IC 和其他位置實現直流電源旁路,以確保穩定、一致的高頻性能。所選的旁路電容器在所需的頻率下應具有最低阻抗,以實現最高的去耦性能。

例如,要進行高頻去耦,1000 皮法 (pF) 的電容器并不是一個合適的選擇。在 5 GHz 頻率下,1000 pF 電容器的自諧振頻率會讓它看起來像個電感器,因此實際上可能與去耦的目的背道而馳。相反,應在靠近 LNA 的位置放置一個具有較小電容(通常小于 10 pF)的電容器。此外,設計中還應包含采用 1000 pF 與 0.01 μF 電容器并聯組合的傳統低頻去耦功能。這些電容器不需要置于 LNA 的附近。

4:輸入和輸出匹配- 盡管很多 LNA 的輸入和輸出具有 50 Ω 的阻抗,但有些 LNA 并非如此。即使它們具有 50 Ω 的阻抗,驅動 LNA 的電路和 LNA 輸出所驅動的電路也可能不具備 50 Ω 的阻抗。因此,必須使用史密斯圓圖創建匹配的電路,并使用 S 參數確立適當的匹配選項。同樣,在 5G 頻率下使用的無功無源元器件(電感器和電容器)會不可避免地產生各種類型的寄生效應:內部、附近的元器件上以及 PC 板上。

設計人員應當做到三點:選擇為在這些頻率下抑制寄生效應而設計的匹配元器件;確保在貼裝元器件時將不可避免的寄生效應充分特征化;以及使用這些值對匹配電路進行建模并據此調整標稱值。

5:電纜互連 -有些 5G 系統需要在 PC 板及其帶狀線傳輸線路之外進行互連,因此需要使用物理電纜。如果使用了差分接口(通常采用這種方法保持電路平衡和提高噪聲抗擾度),這些電纜互連可能需要使用時延匹配電纜對,而且兩根電纜最好具有相同的傳播特征。

因此,用于 5G 到 40 GHz 及更高頻率的高性能電纜往往可將其延遲匹配至 1 psec(微微秒)。它們成對出售和使用,而且因為無法單獨安裝或更換,兩根物理電纜都帶有“箍帶”,使其始終保持配對狀態。利用這些電纜,差分電路可以在驅動下一級信號鏈時實現高端 LNA 的性能。

結論

5G 無線標準正在將工作頻率推向更高水平,進入多 GHz 和數十 GHz 范圍。它還要求模擬電路(尤其是低噪聲放大器)具備更低的噪聲/更低的失真性能。SiGe、SOI 和 GaAs 等新型 IC 工藝技術可以滿足這些需求。但如果不重視射頻在這些更高頻率下遭遇的現實,優質 LNA 的性能將無從談起。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • LNA
    LNA
    +關注

    關注

    4

    文章

    270

    瀏覽量

    57520
  • 脈寬調制
    +關注

    關注

    3

    文章

    219

    瀏覽量

    38329
  • 5G
    5G
    +關注

    關注

    1354

    文章

    48466

    瀏覽量

    564506
收藏 人收藏

    評論

    相關推薦

    5G對對LNA性能的要求及解決方案

    隨著5G無線網絡的發展,無線電前端的性能在RF接收器信號路徑中越來越重要,特別是對于低噪聲放大器(LNA)。隨著LNA工藝技術的出現,如硅鍺(SiGe),砷化鎵(GaAs)和絕緣體上
    的頭像 發表于 03-20 08:04 ?1.2w次閱讀
    <b class='flag-5'>5G</b>對對<b class='flag-5'>LNA</b>性能的要求及解決方案

    5G是什么?5G到底什么時候來?

    G、4G干的都是人事(連接人)不是質變,5G干的不是人事(連接物)才是質變 :4G網絡下,云端系統無法傳輸緊急指示
    發表于 06-14 17:02

    5G為什么叫5G

    `本文轉載于網優雇傭軍,本文作者: 蜉蝣采采。眾說周知,3GPP 5G的Logo已經近一年前在出爐,這也坐實了的5G標準的名稱:5G標準的大名就叫5G,就是這么直白,就是這么任性。要知
    發表于 01-20 12:36

    中國5G海外工程屢屢觸礁,5G實力得到肯定

    是開放的技術,是融進全球、融進經濟和社會發展的過程。每個國家所面對的挑戰是不相同的,只有攜手合作、共同攻堅,才能發揮出更大的建設優勢。因此,面對海外工程摩擦下,中國不需要慌張,繼續推進國內5G建設
    發表于 08-27 16:59

    5G測試怎么與未來對話?

    無人駕駛、遠程手術這些對于低時延、高可靠性有極高要求的場合。在這些領域,5G發揮巨大的作用。”是德科技全球副總裁兼無線測試業務總經理Satish Dhanasekaran如是說。日前,第一屆“全球5G大會
    發表于 06-10 07:55

    5G技術,為什么中國能行?

    大的趨勢和變化往往伴隨著投資的機會,5G毫無二致。我們談論5G的投資機會之前,有必要先理清楚一些基本的背景知識。這些背景知識,不只是一些基礎的技術,更暗藏諸多人和社會的因素。筆者希望,通過本文
    發表于 08-15 08:30

    5G手機配置曝光,宏旺半導體LPDDR4X 助力5G時代

    的是12GB+1256GB存儲組合,相信這樣的高配置今后5G手機中將會很常見。 5G時代對手機功能是全方面的提升,像素提高與CPU處理器高速運行的雙重夾擊下,大容量的系統運行內存將
    發表于 08-17 10:10

    5G智能城市中有哪些應用

    不難看出建設智慧城市技術是基礎。而5G起著鏈接所有技術的作用,有了物聯網、云計算、大數據、設備,如果沒有5G,這些就像一盤散沙,根本發揮不了各自的作用。所以智慧城市建設的浪潮下,現在
    發表于 08-14 07:35

    請問一下如何SDNOTN網絡中發揮最大潛能?

    如何SDNOTN網絡中發揮最大潛能?
    發表于 05-21 06:11

    一文看盡智能連接將會在哪些關鍵領域中發揮重要作用?

    5G、物聯網和AI結合的究極形態是什么?智能連接將會在哪些關鍵領域中發揮重要作用?
    發表于 06-29 09:30

    5G 器件的設計與開發: 5G 性能范圍

    關鍵。5G 網絡使用波束形成使信號傳輸最大化,波束形成中,發射機和接收機之間傳遞形狀指向的信號。同樣重要的是保持5g 市場的競爭力是模塊
    發表于 04-10 21:31

    5G技術智慧醫療中發揮著關鍵性的作用

    基于低時延、高速率、高可靠性、高帶寬特征,5G技術可保障移動急救、無線監測、遠程診斷、遠程會診、移動查房、等場景數據安全與網絡的高效連接,可見5G技術能在智慧醫療中發揮關鍵作用。
    發表于 10-09 16:30 ?2237次閱讀

    5G抗擊疫情方面已發揮了哪些作用

    5G抗擊疫情以及復工復產工作中發揮了重要作用。同時2020年也是5G建設的關鍵年,如何盡早推動5G建設步入正軌是當前各方關注的重要話題。
    發表于 03-02 09:15 ?5793次閱讀

    5G技術構建綠色經濟中發揮著巨大作用

    O2發布的一份新報告認為,新冠疫情大流行之后,5G移動技術將在英國綠色經濟中發揮關鍵作用,實現碳排放量的大幅減少,使英國更趨向于實現其凈零野心。
    的頭像 發表于 12-26 02:03 ?455次閱讀

    5GAI的潛能充分發揮

    人工智能的應用離不開網絡的支持,5G的高帶寬、低時延、強信號毋庸置疑會為人工智能注入強動力。5G將在推動不斷增長的物聯網中發揮巨大作用,到2025年,預計將在全球范圍內安裝超過754.4億個互聯設備
    的頭像 發表于 05-09 10:46 ?934次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>讓</b>AI的潛能充分<b class='flag-5'>發揮</b>
    主站蜘蛛池模板: 老湿司午夜爽爽影院榴莲视频| 国产亚洲精品精华液| 亚洲va久久久久| 色欲精品国产AV久久久| 欧美疯狂做受xxxxx喷水| 久久热在线视频精品店| 国产在线观看免费观看| 国产精品青青草原app大全| 成人免费视频在线看| 小柔的性放荡羞辱日记动漫| 久久久高清国产999尤物| 好男人在线观看视频观看高清视频免费| 俄罗斯XXXXXL18| NANANA在线观看高清影院| 99re久久热在这里精品| 曰韩一本道高清无码av| 亚洲 日韩 色 图网站| 色狠狠色狠狠综合天天| 免费无遮挡又黄又爽网站| 久久www99re在线播放| 国产系列在线亚洲视频| 国产成人无码一区AV在线观看 | 无遮挡h肉3d动漫在线观看| 人与人特黄一级| 热久久免费频精品99热| 欧美z000z猪| 免费99精品国产自在现线 | 亚洲精品无码一区二区三区四虎| 色狠狠AV老熟女| 色综合久久88一加勒比| 日本午夜精品理论片A级APP发布 | 花蝴蝶高清观看免费| 国内精品久久久久影院男同志| 国产人妻人伦精品59HHH| 国产乱码免费卡1卡二卡3卡四卡| 国产精品久久人妻无码网站一区无| 郭德纲于谦2012最新相声| 国产成人精品视频播放| 国产精品搬运| 国产亚洲精品久久播放| 狠狠躁日日躁人人爽|