GPIO, 全稱 General-Purpose Input/Output(通用輸入輸出),是一種軟件運行期間能夠動態配置和控制的通用引腳。 Firefly-RK3128 有 4 組 GPIO bank: GPIO0,GPIO1, GPIO2, GPIO3。每組又以 A0~A7, B0~B7, C0~C7, D0~D7 作為編號區分。 每個 GPIO 口除了通用輸入輸出功能外,還可能有其它復用功能,例如 GPIO1_C2,可以復用成以下功能之一:
每個 GPIO 口的驅動電流、上下拉和重置后的初始狀態都不盡相同,詳細情況請參考《RK3128 規格書》中的 “RK3128 function IO description” 一章。
Firefly-RK3128 的 GPIO 驅動是在以下 pinctrl 文件中實現的:
kernel/drivers/pinctrl/pinctrl-rockchip.c
下面以電源 LED 燈的驅動為例,講述如何在內核編寫代碼控制 GPIO 口的輸出。
首先需要在 rk3128-firerpime.dts 中增加驅動的資源描述:
這里定義了兩顆 LED 燈的 GPIO 設置:
led-work GPIO1_C6 GPIO_ACTIVE_LOW led-power GPIO1_C7 GPIO_ACTIVE_LOW
GPIO_ACTIVE_LOW 表示低電平有效(燈亮),如果是高電平有效,需要替換為 GPIO_ACTIVE_HIGH 。 之后在驅動程序中加入對 GPIO 口的申請和控制則可:
#ifdef CONFIG_OF #include #include #endif static int firefly_led_probe(struct platform_device *pdev) { int ret = -1; int gpio, flag; struct device_node *led_node = pdev->dev.of_node; gpio = of_get_named_gpio_flags(led_node, "led-power", 0, &flag); if (!gpio_is_valid(gpio)){ printk("invalid led-power: %d\n",gpio); return -1; } if (gpio_request(gpio, "led_power")) { printk("gpio %d request failed!\n",gpio); return ret; } led_info.power_gpio = gpio; led_info.power_enable_value = (flag == OF_GPIO_ACTIVE_LOW) ? 0 : 1; gpio_direction_output(led_info.power_gpio, !(led_info.power_enable_value)); ... on_error:gpio_free(gpio); }
of_get_named_gpio_flags 從設備樹中讀取 led-power 的 GPIO 配置編號和標志,gpio_is_valid 判斷該 GPIO 編號是否有效,gpio_request 則申請占用該 GPIO。如果初始化過程出錯,需要調用 gpio_free 來釋放之前申請過且成功的 GPIO 。
調用 gpio_direction_output 就可以設置輸出高還是低電平,因為是 GPIO_ACTIVE_LOW ,如果要燈亮,需要寫入 0 。
實際中如果要讀出 GPIO,需要先設置成輸入模式,然后再讀取值:
int val;gpio_direction_input(your_gpio);val = gpio_get_value(your_gpio);
下面是常用的 GPIO API 定義:
#include #include enum of_gpio_flags { OF_GPIO_ACTIVE_LOW = 0x1, }; int of_get_named_gpio_flags(struct device_node *np, const char *propname, int index, enum of_gpio_flags *flags); int gpio_is_valid(int gpio); int gpio_request(unsigned gpio, const char *label); void gpio_free(unsigned gpio); int gpio_direction_input(int gpio); int gpio_direction_output(int gpio, int v);
如何定義 GPIO 有哪些功能可以復用,在運行時又如何切換功能呢?以 I2C1 為例作簡單的介紹。查規格表可知,I2C1_SDA 與 I2C1_SCL 的功能定義如下:
在 /kernel/arch/arm/boot/dts/rk312x.dtsi 里有:
i2c1: i2c@20056000 { compatible = "rockchip,rk30-i2c"; reg = <0x20056000 0x1000>; interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;#address-cells = <1>;#size-cells = <0>; pinctrl-names = "default", "gpio"; pinctrl-0 = <&i2c1_sda &i2c1_scl>; pinctrl-1 = <&i2c1_gpio>; gpios = <&gpio0 GPIO_A3 GPIO_ACTIVE_LOW>, <&gpio0 GPIO_A2 GPIO_ACTIVE_LOW>; clocks = <&clk_gates8 5>; rockchip,check-idle = <1>; status = "disabled"; };
此處,跟復用控制相關的是 pinctrl- 開頭的屬性:
- pinctrl-names 定義了狀態名稱列表: default (i2c 功能) 和 gpio 兩種狀態。
- pinctrl-0 定義了狀態 0 (即 default)時需要設置的 pinctrl: i2c1_sda 和 i2c1_scl
- pinctrl-1 定義了狀態 1 (即 gpio)時需要設置的 pinctrl: i2c1_gpio
這些 pinctrl 在 /kernel/arch/arm/boot/dts/rk312x-pinctrl.dtsi 中定義:
/ { pinctrl: pinctrl@20008000 { compatible = "rockchip,rk312x-pinctrl";... gpio0_i2c1 { i2c1_sda:i2c1-sda { rockchip,pins = <I2C1_SDA>; rockchip,pull = <VALUE_PULL_DEFAULT>; }; i2c1_scl:i2c1-scl { rockchip,pins = <I2C1_SCL>; rockchip,pull = <VALUE_PULL_DEFAULT>; }; i2c1_gpio: i2c1-gpio { rockchip,pins = <FUNC_TO_GPIO(I2C1_SDA)>, <FUNC_TO_GPIO(I2C1_SCL)>; rockchip,pull = <VALUE_PULL_DEFAULT>;};}; ... } }
I2C1_SDA, I2C1_SCL 的定義在 /kernel/arch/arm/boot/dts/include/dt-bindings/pinctrl/rockchip-rk312x.h 中:
#define GPIO0_A3 0x0a30#define I2C1_SDA 0x0a31#define MMC1_CMD 0x0a32 #define GPIO0_A2 0x0a20#define I2C1_SCL 0x0a21
FUN_TO_GPIO 的定義在 /kernel/arch/arm/boot/dts/include/dt-bindings/pinctrl/rockchip.h 中:
#define FUNC_TO_GPIO(m) ((m) & 0xfff0)
也就是說 FUNC_TO_GPIO(I2C1_SDA) == GPIO0_A3, FUNC_TO_GPIO(I2C1_SCL) == GPIO7_A2 。 像 0x0a31 這樣的值是有編碼規則的:
0 a3 1 | | `- func | `---- offset `------ bank
0x0a31 就表示 GPIO0_A3 func1, 即 I2C1_SDA 。
在復用時,如果選擇了 “default” (即 i2c 功能),系統會應用 i2c1_sda 和 i2c1_scl 這兩個 pinctrl,最終得將 GPIO0_A3 和 GPIO0_A2 兩個針腳切換成對應的 i2c 功能;而如果選擇了 “gpio” ,系統會應用 i2c1_gpio 這個 pinctrl,將 GPIO0_A3 和 GPIO0_A2 兩個針腳還原為 GPIO 功能。我們看看 i2c 的驅動程序 /kernel/drivers/i2c/busses/i2c-rockchip.c 是如何切換復用功能的:
static int rockchip_i2c_probe(struct platform_device *pdev){ struct rockchip_i2c *i2c = NULL; struct resource *res; struct device_node *np = pdev->dev.of_node; int ret; // ... i2c->sda_gpio = of_get_gpio(np, 0); if (!gpio_is_valid(i2c->sda_gpio)) { dev_err(&pdev->dev, "sda gpio is invalid\n"); return -EINVAL; } ret = devm_gpio_request(&pdev->dev, i2c->sda_gpio, dev_name(&i2c->adap.dev)); if (ret) { dev_err(&pdev->dev, "failed to request sda gpio\n"); return ret; } i2c->scl_gpio = of_get_gpio(np, 1); if (!gpio_is_valid(i2c->scl_gpio)) { dev_err(&pdev->dev, "scl gpio is invalid\n"); return -EINVAL; } ret = devm_gpio_request(&pdev->dev, i2c->scl_gpio, dev_name(&i2c->adap.dev)); if (ret) { dev_err(&pdev->dev, "failed to request scl gpio\n"); return ret; } i2c->gpio_state = pinctrl_lookup_state(i2c->dev->pins->p, "gpio"); if (IS_ERR(i2c->gpio_state)) { dev_err(&pdev->dev, "no gpio pinctrl state\n"); return PTR_ERR(i2c->gpio_state); } pinctrl_select_state(i2c->dev->pins->p, i2c->gpio_state); gpio_direction_input(i2c->sda_gpio); gpio_direction_input(i2c->scl_gpio); pinctrl_select_state(i2c->dev->pins->p, i2c->dev->pins->default_state); // ... }
首先是調用 of_get_gpio 取出設備樹中 i2c1 結點的 gpios 屬于所定義的兩個 gpio:
gpios = <&gpio0 GPIO_A3 GPIO_ACTIVE_LOW>, <&gpio0 GPIO_A2 GPIO_ACTIVE_LOW>;
然后是調用 devm_gpio_request 來申請 gpio,接著是調用 pinctrl_lookup_state 來查找 “gpio” 狀態,而默認狀態 “default” 已經由框架保存到 i2c->dev-pins->default_state 中了。最后調用 pinctrl_select_state 來選擇是 “default” 還是 “gpio” 功能。 下面是常用的復用 API 定義:
#include struct device { //... #ifdef CONFIG_PINCTRL struct dev_pin_info *pins;#endif//...}; struct dev_pin_info {struct pinctrl *p; struct pinctrl_state *default_state; #ifdef CONFIG_PMstruct pinctrl_state *sleep_state; struct pinctrl_state *idle_state;#endif}; struct pinctrl_state * pinctrl_lookup_state(struct pinctrl *p, const char *name); int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *s);
-
Linux
+關注
關注
87文章
11292瀏覽量
209331 -
嵌入式主板
+關注
關注
7文章
6085瀏覽量
35296 -
Firefly
+關注
關注
2文章
538瀏覽量
7027
發布評論請先 登錄
相關推薦
評論