色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于AI與深度學習的SDR硬件架構

iIeQ_mwrfnet ? 來源:微波射頻網 ? 2019-11-26 14:18 ? 次閱讀

隨著無線協議變得越來越復雜,頻譜環境的競爭日益激烈,電子戰也越來越復雜。無線電所需的基帶處理程度也更加復雜和專業化。

在充滿威脅的復雜環境下,想要完全優化射頻系統是不現實的。設計人員以前一直依賴簡化的封閉式模型,但是這些模型無法準確捕捉到真實效果;而且對系統的優化也非常零碎,僅能優化單個組件,無法進行完整的端到端優化。

在過去幾年里,人工智能已經取得了長足的進步,尤其是機器學習技術中的深度學習。為了解決眾多棘手問題,人類設計人員一直都在花費大量精力研究手動式工程解決方案,而深度學習則直接將目標對準了針對特定問題的大型復雜數據集。

AI和無線電射頻

如要了解AI如何簡化RF系統設計的復雜性,就需要從大局上了解最近哪些技術進步推動了AI系統的迅速普及。“AI”這個術語已經使用了幾十年,從廣義上講,是指基于機器決策的問題解決方法。機器學習(ML)屬于AI的一種,指使用數據對機器進行訓練,以解決特定問題。深度學習是一類具有“特征學習”能力的機器學習技術,在這個過程中,由機器決定使用哪些方面的數據作為決策依據,而不是由人類設計人員規定某些明顯的特征作為決策依據。

例如,設計人員以前都是根據多年的特征識別技術研究心得,手動編寫面部識別算法。而深度學習方法將包含人臉的圖像數據集與操作人員訓練結合起來,可識別出人臉的位置。機器會學習識別人臉的構成,不需要設計人員定義算法。

同樣,RF信號分類和頻譜感知算法也從深度學習方法中獲益匪淺。過去的自動調制分類(AMC)和頻譜監測方法需要耗費大量人力來進行手動工程特征提取(工程師團隊通常需要花費數月時間進行設計和部署),而基于深度學習的系統通過幾小時的訓練,就能識別新的信號類型。深度學習還允許端到端學習,通過這種方式,一個模型可以同時學習編碼器和解碼器,從而構成一個完整的收發系統。該模型不需要嘗試逐個優化每個組件(例如,數模轉換器[DAC]、模數轉換器[ADC]、射頻轉換器、無線信道和接收器網絡),并將它們拼接在一起,而是將系統視為端到端函數,學習從整體上優化系統。

基于AI與深度學習的SDR硬件架構

SDR將寬帶前端和功能強大的處理器相結合,為信號分析應用提供了理想的平臺。人工智能和深度學習技術可以訓練系統,使系統檢測信號的速度遠超手工編寫的算法。了解DeepSig如何將COTS SDR與人工智能和深度學習相結合。

用于防御的COTS CR 系統通常包括兩種類型:

1. 部署在現場的緊湊型系統,利用人工智能實時確定可作為行動依據的情報。這些系統采用FPGA和通用處理器(GPP),有時會額外配備緊湊型圖形處理單元(GPU)模塊。

2. 需要密集計算的模塊化可擴展系統,通常由與高端服務器相連的CR組成,具有功能強大的GPU,可進行離線處理。這些系統經常需要用到較大型的RF儀器,而且由于數據處理量增加,往往需要使用吞吐量更高的總線,例如PCIe。

對于低SWaP系統來說,FPGA硬件處理效率、低延遲性能以及GPP可編程性就非常關鍵。雖然對FPGA進行編程可能會使開發變得復雜一些,但這是實時系統實現低SWaP的關鍵。為此,NI和Ettus Research聯合開發了通用軟件無線電外設(USRP),為這些系統提供了緊湊的現成平臺。用戶可編程FPGA是USRP設備的固有組成部分,直接集成LabVIEW或開源軟件,例如芯片射頻網絡(RFNoC),可降低使用硬件描述語言對FPGA進行編程的難度。

對于大型計算密集型系統而言,擁有可擴展并且可以異構利用同類最佳處理器的硬件架構意義重大。這些架構通常包括用于基帶處理的FPGA、用于控制的GPP以及用于AI處理的GPU。GPU既能夠處理大量數據,同時也相對易于編程。GPU的缺點是數據管道長,導致傳輸時間較長,不過這個問題只對需要超低延遲的系統有影響。當然,這兩類系統中都有許多設備以犧牲性能為代價來降低功耗,在設計分析中應該對此加以權衡。

表1. 認知無線電的處理器選項

舉例來說,美國國防高級研究計劃局(DARPA)頻譜協同挑戰賽(Spectrum Collaboration Challenge)中使用的Colosseum試驗臺就是一個大型計算密集型系統。該系統包含128個帶有板載FPGA的雙通道USRP(Ettus X310)、帶有多個FPGA的ATCA-3671刀片服務器,以及基于GPU的高端服務器,其中ATCA-3671服務器主要用于數據聚合,GPU則可進行強大的AI處理。

圖1.DARPA Colosseum測試臺配備128個Ettus X310 USRP和NI ATCA-3671處理單元。

部署系統中的AI

如果使用經過訓練的深層神經網絡執行信號檢測和分類,只需要幾毫秒的時間。與使用傳統方法的迭代和算法式信號搜索、檢測和分類相比,這種模式可將性能提高好幾個數量級。這些優勢同時也有助于降低功耗和計算要求,訓練模型的靈敏度通常至少是現有方法的兩倍。

美國的DeepSig是一家專門從事信號處理和無線電系統業務的初創公司。其OmniSIG傳感器軟件產品中使用了基于深度學習的商業化RF傳感技術。該產品可與NI和Ettus Research的USRP兼容。借助深度學習的自動特征學習功能,OmniSIG傳感器只需經過幾秒鐘的信號捕獲和訓練,就可以識別新的信號類型。

對于學習型通信系統,包括便于直接在物理層進行訓練的端到端學習,可使用DeepSig的OmniPHY軟件來學習如何在惡劣的信道條件和頻譜環境以及硬件性能有限的情況下優化通信系統。其中包括非視距通信;抗干擾能力;激烈對抗環境中的多用戶系統;和硬件失真效應抑制。

圖2.OmniSIG傳感器使用通用SDR對蜂窩頻段內的信號進行檢測和分類。

學習型通信系統的優勢之一是可以針對不同任務輕松進行優化。比如有些用戶更關心吞吐量和延遲,而有些用戶可能會優先考慮作戰信息鏈距離、功耗,甚至簽名和檢測或攔截概率。此外,在機器學習中,對作戰環境越了解,訓練出的解決方案就越有效。

將基于深度學習的感測和有源無線電波形相結合,可實現全新的自適應波形和電子戰,從而能夠應對當今對抗激烈頻譜的環境。對于基于深度學習的系統訓練而言,處理器性能十分重要,但是經過訓練后,該模型就可以很容易地部署到低SWaP嵌入式系統中,例如邊緣傳感器和戰術無線電。

為什么在信號分析系統中使用SDR?

SDR的核心元件是射頻前端和處理單元,因而非常適合原型和部署基于AI的信號分析系統。USRP的低SWaP使其非常適合通信情報部署,用于檢測低于6 GHz頻率的信號。

對于高頻率和計算密集型應用,PXI平臺儀器可以擴展至毫米波頻率,可處理的頻段最高可達Ka頻段,通過x8 PCIe鏈路提供更高的數據吞吐量,并采用包含多個Xilinx Virtex-7 FPGA的ATCA模塊進行海量數據處理。

如果要檢測可能采用擴頻或跳頻技術且頻率未知的不良信號,就需要采用寬帶接收機。COTS SDR集成了最新的寬帶ADC和DAC來解決這一問題。另外,您可以組成多通道系統,通過將接收器信道調諧到相鄰頻段來擴展有效帶寬,或者通過共享本地振蕩器來實現通道間的相位一致性。這樣不僅能夠檢測和識別信號,還能對信號進行測向和定位。

NI和Ettus Research USRP采用異構架構來處理SDR和主機PC上的信號。由于認知系統需要生成輸出信號來響應頻譜感測或接收到的信號,SDR上的板載內聯處理功能就顯得非常重要。FPGA板載處理可以提供很多好處,例如,通過傳輸或僅存儲感興趣的信號,來降低延遲(與主機雙向傳輸所有數據相比)和減少數據鏈路或總線上的數據。

惡劣的電磁環境要求信號分析系統能夠檢測未知信號并快速適應新的威脅。具有深度學習能力的算法可以接受訓練以識別新信號,同時縮短開發時間。而且,SDR架構具有低SWaP、實時處理能力、寬帶前端和靈活編程等優點,無疑是部署基于AI的信號分析系統的理想之選。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 射頻
    +關注

    關注

    104

    文章

    5574

    瀏覽量

    167695
  • SDR
    SDR
    +關注

    關注

    7

    文章

    233

    瀏覽量

    50461
  • 深度學習
    +關注

    關注

    73

    文章

    5500

    瀏覽量

    121113

原文標題:人工智能應用于SDR的信號分析系統

文章出處:【微信號:mwrfnet,微信公眾號:微波射頻網】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    《算力芯片 高性能 CPUGPUNPU 微架構分析》第3篇閱讀心得:GPU革命:從圖形引擎到AI加速器的蛻變

    在數據挖掘工作中,我經常需要處理海量數據的深度學習任務,這讓我對GPU架構和張量運算充滿好奇。閱讀《算力芯片》第7-9章,讓我對這些關鍵技術有了全新認識。 GPU架構從早期的固定功能流
    發表于 11-24 17:12

    NPU技術如何提升AI性能

    設計的處理器,與傳統的CPU和GPU相比,它在執行深度學習任務時具有更高的效率和更低的能耗。NPU通過專門優化的硬件結構和指令集,能夠更快地處理神經網絡中的大量并行計算任務。 1. 優化硬件
    的頭像 發表于 11-15 09:11 ?421次閱讀

    NPU在深度學習中的應用

    設計的硬件加速器,它在深度學習中的應用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學習算法優化的處理器,它與傳統的CPU和G
    的頭像 發表于 11-14 15:17 ?519次閱讀

    pcie在深度學習中的應用

    深度學習模型通常需要大量的數據和強大的計算能力來訓練。傳統的CPU計算資源有限,難以滿足深度學習的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用
    的頭像 發表于 11-13 10:39 ?380次閱讀

    AI干貨補給站 | 深度學習與機器視覺的融合探索

    ,幫助從業者積累行業知識,推動工業視覺應用的快速落地。本期亮點預告本期將以“深度學習與機器視覺的融合探索”為主題,通過講解深度學習定義、傳統機器視覺與
    的頭像 發表于 10-29 08:04 ?221次閱讀
    <b class='flag-5'>AI</b>干貨補給站 | <b class='flag-5'>深度</b><b class='flag-5'>學習</b>與機器視覺的融合探索

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPG
    的頭像 發表于 10-25 09:22 ?215次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習
    的頭像 發表于 10-23 15:25 ?652次閱讀

    FPGA做深度學習能走多遠?

    的發展前景較為廣闊,但也面臨一些挑戰。以下是一些關于 FPGA 在深度學習中應用前景的觀點,僅供參考: ? 優勢方面: ? 高度定制化的計算架構:FPGA 可以根據深度
    發表于 09-27 20:53

    AI引擎機器學習陣列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在憑借 AI 引擎機器學習 ( ML ) 架構來提供突破性
    的頭像 發表于 09-18 09:16 ?390次閱讀
    <b class='flag-5'>AI</b>引擎機器<b class='flag-5'>學習</b>陣列指南

    NVIDIA推出全新深度學習框架fVDB

    在 SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發表于 08-01 14:31 ?592次閱讀

    基于AI深度學習的缺陷檢測系統

    在工業生產中,缺陷檢測是確保產品質量的關鍵環節。傳統的人工檢測方法不僅效率低下,且易受人為因素影響,導致誤檢和漏檢問題頻發。隨著人工智能技術的飛速發展,特別是深度學習技術的崛起,基于AI深度
    的頭像 發表于 07-08 10:30 ?1366次閱讀

    人工智能、機器學習深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning,
    的頭像 發表于 07-03 18:22 ?1268次閱讀

    泰禾智能攜AI智選深度學習系列新品亮相臨沂花生展

    6月28-29日,2024年第十一屆花生產業博覽會在臨沂國際會展中心盛大開幕。泰禾智能攜AI智選深度學習系列新品精彩亮相展會,以其卓越的技術實力和前沿的產品創新,為用戶帶來更加智能、高效、便捷
    的頭像 發表于 06-29 14:19 ?744次閱讀

    HDC2024華為發布鴻蒙原生智能:AI與OS深度融合,開啟全新的AI時代

    董事長余承東先生表示:全新的Harmony Intelligence鴻蒙原生智能,將開啟全新的AI時代! ? 軟硬芯云協同 鴻蒙原生智能深度融合AI與OS “以消費者體驗為核心,為消費者做偉大的產品”是華為終端堅定不移的業務戰略
    的頭像 發表于 06-24 09:28 ?613次閱讀
    HDC2024華為發布鴻蒙原生智能:<b class='flag-5'>AI</b>與OS<b class='flag-5'>深度</b>融合,開啟全新的<b class='flag-5'>AI</b>時代

    FPGA在深度學習應用中或將取代GPU

    AI 框架模型映射到硬件架構。 Larzul 的公司 Mipsology 希望通過 Zebra 來彌合這一差距。Zebra 是一種軟件平臺,開發者可以輕松地將深度
    發表于 03-21 15:19
    主站蜘蛛池模板: 久久99热狠狠色一区二区| 国产午夜精品理论片| 扒开校花粉嫩小泬喷潮漫画| 99久久国产免费福利| 成人国产在线24小时播放视频| 调教日本美女| 国产精品资源网站在线观看| 国产午夜视频| 久久婷婷久久一区二区三区 | 日本zljzljzlj精品| 色狼亚洲色图| 亚洲m男在线中文字幕| 亚洲熟伦熟女专区| 99久久网站| 国产精品久久久久影院嫩草 | 精品无人区麻豆乱码1区2| 美女夫妻内射潮视频| 热re99久久精品国99热| 我就去色色| 伊人久久电影院| 啊好深啊别拔就射在里面| 国产在线观看www| 男女XX00上下抽搐动态图| 亚洲精品中文字幕一二三四区| 一区精品在线| 被强J高H纯肉公交车啊| 国内自拍 在线 亚洲 欧美| 美女扒开腿让男人桶个爽| 视频一区国产| 中文字幕久久久| 福利一区福利二区| 久久精品熟女亚洲AV国产| 日本不卡免免费观看| 野花视频在线观看免费| 白丝女仆被啪到深夜漫画| 精品无码国产自产在线观看| 奇米狠狠干| 伊人久久中文| 国产超碰人人爱被IOS解锁| 老板吻我下身好爽到高潮| 我不卡影院手机在线观看|