色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的回歸分析和回歸方法

汽車玩家 ? 來源:智能算法 ? 作者:智能算法 ? 2020-01-19 17:22 ? 次閱讀

根據(jù)受歡迎程度,線性回歸和邏輯回歸經(jīng)常是我們做預(yù)測模型時(shí),且第一個學(xué)習(xí)的算法。但是如果認(rèn)為回歸就兩個算法,就大錯特錯了。事實(shí)上我們有許多類型的回歸方法可以去建模。每一個算法都有其重要性和特殊性。

內(nèi)容

1.什么是回歸分析?

2.我們?yōu)槭裁匆褂没貧w分析?

3.回歸有哪些類型 ?

4.線性回歸

5.邏輯回歸

6.多項(xiàng)式回歸

7.逐步回歸

8.嶺回歸

9.Lasso回歸

10.ElasticNet回歸

什么是回歸分析?

回歸分析是研究自變量和因變量之間關(guān)系的一種預(yù)測模型技術(shù)。這些技術(shù)應(yīng)用于預(yù)測,時(shí)間序列模型和找到變量之間關(guān)系。例如可以通過回歸去研究超速與交通事故發(fā)生次數(shù)的關(guān)系。

我們?yōu)槭裁匆没貧w分析?

這里有一些使用回歸分析的好處:它指示出自變量與因變量之間的顯著關(guān)系;它指示出多個自變量對因變量的影響。回歸分析允許我們比較不同尺度的變量,例如:價(jià)格改變的影響和宣傳活動的次數(shù)。這些好處可以幫助市場研究者/數(shù)據(jù)分析師去除和評價(jià)用于建立預(yù)測模型里面的變量。

回歸有哪些類型?

我們有很多種回歸方法用預(yù)測。這些技術(shù)可通過三種方法分類:自變量的個數(shù)、因變量的類型和回歸線的形狀。

1.線性回歸

線性回歸可謂是世界上最知名的建模方法之一,也是應(yīng)該是我們第一個接觸的模型。在模型中,因變量是連續(xù)型的,自變量可以使連續(xù)型或離散型的,回歸線是線性的。

線性回歸用最適直線(回歸線)去建立因變量Y和一個或多個自變量X之間的關(guān)系。可以用公式來表示:

Y=a+b*X+e

a為截距,b為回歸線的斜率,e是誤差項(xiàng)。

簡單線性回歸與多元線性回歸的差別在于:多元線性回歸有多個(》1)自變量,而簡單線性回歸只有一個自變量。到現(xiàn)在我們的問題就是:如何找到那條回歸線?

我們可以通過最小二乘法把這個問題解決。其實(shí)最小二乘法就是線性回歸模型的損失函數(shù),只要把損失函數(shù)做到最小時(shí)得出的參數(shù),才是我們最需要的參數(shù)。

我們一般用決定系數(shù)(R方)去評價(jià)模型的表現(xiàn)。

重點(diǎn):

1.自變量與因變量之間必須要有線性關(guān)系。

2.多重共線性、自相關(guān)和異方差對多元線性回歸的影響很大。

3.線性回歸對異常值非常敏感,其能嚴(yán)重影響回歸線,最終影響預(yù)測值。

4.在多元的自變量中,我們可以通過前進(jìn)法,后退法和逐步法去選擇最顯著的自變量。

2. 邏輯回歸

邏輯回歸是用來找到事件成功或事件失敗的概率。當(dāng)我們的因變量是二分類(0/1,True/False,Yes/No)時(shí)我們應(yīng)該使用邏輯回歸。

重點(diǎn):

1.在分類問題中使用的非常多。

2.邏輯回歸因其應(yīng)用非線性log轉(zhuǎn)換方法,使得其不需要自變量與因變量之間有線性關(guān)系。

3.為防止過擬合和低擬合,我們應(yīng)該確保每個變量是顯著的。應(yīng)該使用逐步回歸方法去估計(jì)邏輯回歸。

4.邏輯回歸需要大樣本量,因?yàn)樽畲笏迫还烙?jì)在低樣本量的情況下表現(xiàn)不好。

5.要求沒有共線性。

6.如果因變量是序數(shù)型的,則稱為序數(shù)型邏輯回歸。

7.如果因變量有多個,則稱為多項(xiàng)邏輯回歸。

3. 多項(xiàng)式回歸

如果一個回歸,它的自變量指數(shù)超過1,則稱為多項(xiàng)式回歸。可以用公式表示:

y = a + b * x^2

在這個回歸技術(shù)中,最適的線不是一條直線,而是一條曲線。

重點(diǎn):

① 很多情況下,我們?yōu)榱私档驼`差,經(jīng)常會抵制不了使用多項(xiàng)式回歸的誘惑,但事實(shí)是,我們經(jīng)常會造成過擬合。所以要經(jīng)常的把數(shù)據(jù)可視化,觀察數(shù)據(jù)與模型的擬合程度。

② 特別是要看曲線的結(jié)尾部分,看它的形狀和趨勢是否有意義。高的多項(xiàng)式往往會產(chǎn)生特別古怪的預(yù)測值。

4. 逐步回歸

當(dāng)我們要處理多個自變量時(shí),我們就需要這個回歸方法。在這個方法中選擇變量都是通過自動過程實(shí)現(xiàn)的,不需要人的干預(yù)。

這個工程是通過觀察統(tǒng)計(jì)值,比如判定系數(shù),t值和最小信息準(zhǔn)則等去篩選變量。逐步回歸變量一般是基于特定的標(biāo)準(zhǔn)加入或移除變量來擬合回歸模型。

一些常用的逐步回歸方法如下:

1. 標(biāo)準(zhǔn)逐步回歸做兩件事情。只要是需要每一步它都會添加或移除一些變量。

2. 前進(jìn)法是開始于最顯著的變量然后在模型中逐漸增加次顯著變量。

3. 后退法是開始于所有變量,然后逐漸移除一些不顯著變量。

4. 這個模型技術(shù)的目的是為了用最少的變量去最大化模型的預(yù)測能力。它也是一種降維技術(shù)。

5. 嶺回歸

當(dāng)碰到數(shù)據(jù)有多重共線性時(shí),我們就會用到嶺回歸。所謂多重共線性,簡單的說就是自變量之間有高度相關(guān)關(guān)系。在多重共線性中,即使是最小二乘法是無偏的,它們的方差也會很大。通過在回歸中加入一些偏差,嶺回歸酒會減少標(biāo)準(zhǔn)誤差。

‘嶺回歸是一種專用于共線性數(shù)據(jù)分析的有偏估計(jì)回歸方法,實(shí)質(zhì)上是一種改良的最小二乘估計(jì)法,通過放棄最小二乘法的無偏性,以損失部分信息、降低精度為代價(jià)獲得回歸系數(shù)更為符合實(shí)際、更可靠的回歸方法,對病態(tài)數(shù)據(jù)的擬合要強(qiáng)于最小二乘法。’ ---百度百科

嶺回歸是通過嶺參數(shù)λ去解決多重共線性的問題。看下面的公式:

機(jī)器學(xué)習(xí)的回歸分析和回歸方法

其中l(wèi)oss為損失函數(shù),penalty為懲罰項(xiàng)。

重點(diǎn):

1.嶺回歸的假設(shè)與最小二乘法回歸的假設(shè)相同除了假設(shè)正態(tài)性。

2.它把系數(shù)的值收縮了,但是不會為0.

3.正則化方法是使用了l2正則。

6. LASSO回歸

和嶺回歸類似,Lasso(least Absolute Shrinkage and Selection Operator)也是通過懲罰其回歸系數(shù)的絕對值。看下面的公式:

機(jī)器學(xué)習(xí)的回歸分析和回歸方法

Lasso回歸和嶺回歸不同的是,Lasso回歸在懲罰方程中用的是絕對值,而不是平方。這就使得懲罰后的值可能會變成0.

重點(diǎn):

1.其假設(shè)與最小二乘回歸相同除了正態(tài)性。

2.其能把系數(shù)收縮到0,使得其能幫助特征選擇。

3.這個正則化方法為l1正則化。

4.如果一組變量是高度相關(guān)的,lasso會選擇其中的一個,然后把其他都變?yōu)?.

7. ElasticNet回歸

ElasticNet回歸是Lasso回歸和嶺回歸的組合。它會事先訓(xùn)練L1和L2作為懲罰項(xiàng)。當(dāng)許多變量是相關(guān)的時(shí)候,Elastic-net是有用的。Lasso一般會隨機(jī)選擇其中一個,而Elastic-net則會選在兩個。

機(jī)器學(xué)習(xí)的回歸分析和回歸方法

與Lasso和嶺回歸的利弊比較,一個實(shí)用的優(yōu)點(diǎn)就是Elastic-Net會繼承一些嶺回歸的穩(wěn)定性。

重點(diǎn):

1.在選擇變量的數(shù)量上沒有限制

2.雙重收縮對其有影響

3.除了這7個常用的回歸技術(shù),你也可以看看貝葉斯回歸、生態(tài)學(xué)回歸和魯棒回歸。

如何選擇回歸模型?

面對如此多的回歸模型,最重要的是根據(jù)自變量因變量的類型、數(shù)據(jù)的維數(shù)和其他數(shù)據(jù)的重要特征去選擇最合適的方法。以下是我們選擇正確回歸模型時(shí)要主要考慮的因素:

1.數(shù)據(jù)探索是建立預(yù)測模型不可或缺的部分。它應(yīng)該是在選擇正確模型之前要做的。

2.為了比較不同模型的擬合程度,我們可以分析不同的度量,比如統(tǒng)計(jì)顯著性參數(shù)、R方、調(diào)整R方、最小信息標(biāo)準(zhǔn)、BIC和誤差準(zhǔn)則。另一個是Mallow‘s Cp準(zhǔn)則。

3.交叉驗(yàn)證是驗(yàn)證預(yù)測模型最好的方法。你把你的數(shù)據(jù)集分成兩組:一組用于訓(xùn)練,一組用于驗(yàn)證。

4.如果你的數(shù)據(jù)集有許多讓你困惑的變量,你就不應(yīng)該用自動模型選擇方法,因?yàn)槟悴幌氚堰@些變量放在模型當(dāng)中。

5.不強(qiáng)大的模型往往容易建立,而強(qiáng)大的模型很難建立。

6.回歸正則方法在高維度和多重共線性的情況下表現(xiàn)的很好。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評論

    相關(guān)推薦

    垂直型回歸反射光電開關(guān)的原理有哪些E3S-AR61

    垂直型回歸反射光電開關(guān)的原理是基于光線的反射和光電傳感器的檢測機(jī)制。通過利用這一原理,它可以實(shí)現(xiàn)對物體的非接觸式檢測和控制,為工業(yè)自動化和機(jī)器人技術(shù)等領(lǐng)域提供了重要的技術(shù)支持。
    的頭像 發(fā)表于 12-16 10:23 ?101次閱讀

    Minitab常用功能介紹 如何在 Minitab 中進(jìn)行回歸分析

    : Minitab常用功能介紹 數(shù)據(jù)分析功能 :從基本的描述性統(tǒng)計(jì)到復(fù)雜的多元回歸分析,Minitab都能輕松應(yīng)對。具體包括: 基本統(tǒng)計(jì) :提供均值、標(biāo)準(zhǔn)差、方差等基本統(tǒng)計(jì)量的計(jì)算。 回歸
    的頭像 發(fā)表于 12-02 15:38 ?509次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)
    的頭像 發(fā)表于 11-16 01:07 ?383次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)方法</b>能解決哪些問題?

    什么是回歸測試_回歸測試的測試策略

    ? 1、什么是回歸測試 回歸測試(Regression testing) 指在發(fā)生修改之后重新測試先前的測試以保證修改的正確性。理論上,軟件產(chǎn)生新版本,都需要進(jìn)行回歸測試,驗(yàn)證以前發(fā)現(xiàn)和修復(fù)的錯誤
    的頭像 發(fā)表于 11-14 16:44 ?219次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列的信息提取

    方法為該時(shí)間序列填充缺失值。 時(shí)間序列的縮放是指對原有的時(shí)間序列數(shù)據(jù)進(jìn)行數(shù)據(jù)范圍的調(diào)整,以便更好地完成后續(xù)的數(shù)據(jù)分析機(jī)器學(xué)習(xí)任務(wù)。該節(jié)有講到時(shí)間序列的最小最大縮放、時(shí)間序列的最大絕對
    發(fā)表于 08-17 21:12

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書概覽與時(shí)間序列概述

    時(shí)間序列中的自相關(guān)性。 時(shí)間序列有基于線性場景,也有一些非線性性質(zhì)周期性和不對稱性、波動的聚集性、波動中出現(xiàn)的跳躍現(xiàn)象,以及時(shí)間的不可逆性。機(jī)器學(xué)習(xí)已經(jīng)是目前非線性時(shí)序分析的主攻方向之一。 時(shí)間序列
    發(fā)表于 08-07 23:03

    不同類型神經(jīng)網(wǎng)絡(luò)在回歸任務(wù)中的應(yīng)用

    神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)模型,可以用于各種任務(wù),包括回歸。在本文中,我們將討論不同類型的神經(jīng)網(wǎng)絡(luò),以及它們在回歸任務(wù)中的應(yīng)用。 基本的神經(jīng)網(wǎng)絡(luò) 基本的神經(jīng)網(wǎng)絡(luò),也稱為多層感知器(M
    的頭像 發(fā)表于 07-11 10:27 ?1250次閱讀

    機(jī)器學(xué)習(xí)中的數(shù)據(jù)分割方法

    機(jī)器學(xué)習(xí)中,數(shù)據(jù)分割是一項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細(xì)探討機(jī)器學(xué)習(xí)中數(shù)據(jù)分割的方法
    的頭像 發(fā)表于 07-10 16:10 ?1696次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個重要分支,其目標(biāo)是通過讓計(jì)算機(jī)自動從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?987次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)
    的頭像 發(fā)表于 07-02 11:22 ?612次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨(dú)特的方式推動著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1326次閱讀

    名單公布!【書籍評測活動NO.35】如何用「時(shí)間序列與機(jī)器學(xué)習(xí)」解鎖未來?

    捕捉復(fù)雜非線性模式的場景中顯得力不從心。 將時(shí)間序列的分析與預(yù)測用于大規(guī)模的數(shù)據(jù)生產(chǎn)一直存在諸多困難。 在這種背景下,結(jié)合機(jī)器學(xué)習(xí),特別是深度學(xué)習(xí)技術(shù)的時(shí)間序列
    發(fā)表于 06-25 15:00

    機(jī)器學(xué)習(xí)六大核心算法深度解析

    算法歷程:線性回歸是一種古老的統(tǒng)計(jì)方法,它試圖找到最佳擬合數(shù)據(jù)的直線或超平面,最早可以追溯到19世紀(jì)初的高斯最小二乘法理論。
    發(fā)表于 04-23 16:25 ?1786次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>六大核心算法深度解析

    發(fā)展新質(zhì)生產(chǎn)力,打造橡塑新高地 聚焦“國際橡塑展回歸上海啟航盛典”

    闊別六年,行業(yè)年度盛事 - “CHINAPLAS國際橡塑展”將重磅回歸上海,于2024年4月23 - 26日在上海國家會展中心(虹橋)盛裝綻放。開幕在即,“國際橡塑展回歸上海啟航盛典”3月28日在上
    的頭像 發(fā)表于 03-29 15:30 ?974次閱讀
    發(fā)展新質(zhì)生產(chǎn)力,打造橡塑新高地 聚焦“國際橡塑展<b class='flag-5'>回歸</b>上海啟航盛典”

    深入探討線性回歸與柏松回歸

    或許我們所有人都會學(xué)習(xí)的第一個機(jī)器學(xué)習(xí)算法就是線性回歸算法,它無疑是最基本且被廣泛使用的技術(shù)之一——尤其是在預(yù)測分析方面。
    的頭像 發(fā)表于 03-18 14:06 ?652次閱讀
    深入探討線性<b class='flag-5'>回歸</b>與柏松<b class='flag-5'>回歸</b>
    主站蜘蛛池模板: 久久精品一区二区三区资源网| 97国产精品视频在线观看| 久久se精品一区二区国产| 在线观看免费av网| 母乳女神春日もな| 成年人视频在线免费| 神马影院午夜理论二| 国语92电影网午夜福利| 在线亚洲中文字幕36页| 飘雪在线观看免费高清完整版韩国| 成人永久免费视频| 羞羞影院午夜男女爽爽免费| 久久精品观看| fryee性欧美18 19| 特污兔午夜影视院| 久99久热只有精品国产99| 97免费视频在线观看| 色愁愁久久久| 精品成人片深夜| 99久久久无码国产精品不卡按摩| 日韩人妻无码精品久久中文字幕 | 美国一级大黄一片免费的网站| china野外18:19| 午夜成a人片在线观看| 久久国内精品| my pico未删减在线观看| 午夜男人免费福利视频| 久久这里只精品国产99re66| YELLOW视频在线观看最新| 小黄飞二人转| 毛片视频大全| 国产XXXXXX农村野外| 一本道久在线综合道| 青青草久久伊人| 果冻传媒9CM在线观看| ⅹxx日本护土| 亚洲 自拍 欧洲 视频二区| 麻豆一区二区三区蜜桃免费| 俄罗斯freeⅹ性欧美| 伊人亚洲综合网色| 色屁屁影院|