所謂的AI芯片,一般是指針對(duì)AI算法的ASIC(專用芯片)。
傳統(tǒng)的CPU、GPU都可以拿來執(zhí)行AI算法,但是速度慢,性能低,無法實(shí)際商用。
比如,自動(dòng)駕駛需要識(shí)別道路行人紅綠燈等狀況,但是如果是當(dāng)前的CPU去算,那么估計(jì)車翻到河里了還沒發(fā)現(xiàn)前方是河,這是速度慢,時(shí)間就是生命。如果用GPU,的確速度要快得多,但是,功耗大,汽車的電池估計(jì)無法長時(shí)間支撐正常使用,而且,老黃家的GPU巨貴,經(jīng)常單塊上萬,普通消費(fèi)者也用不起,還經(jīng)常缺貨。另外,GPU因?yàn)椴皇菍iT針對(duì)AI算法開發(fā)的ASIC,所以,說到底,速度還沒到極限,還有提升空間。而類似智能駕駛這樣的領(lǐng)域,必須快!在手機(jī)終端,可以自行人臉識(shí)別、語音識(shí)別等AI應(yīng)用,這個(gè)必須功耗低,所以GPU OUT!
所以,開發(fā)ASIC就成了必然。
說說,為什么需要AI芯片。
AI算法,在圖像識(shí)別等領(lǐng)域,常用的是CNN卷積網(wǎng)絡(luò),語音識(shí)別、自然語言處理等領(lǐng)域,主要是RNN,這是兩類有區(qū)別的算法。但是,他們本質(zhì)上,都是矩陣或vector的乘法、加法,然后配合一些除法、指數(shù)等算法。
一個(gè)成熟的AI算法,比如YOLO-V3,就是大量的卷積、殘差網(wǎng)絡(luò)、全連接等類型的計(jì)算,本質(zhì)是乘法和加法。對(duì)于YOLO-V3來說,如果確定了具體的輸入圖形尺寸,那么總的乘法加法計(jì)算次數(shù)是確定的。比如一萬億次。(真實(shí)的情況比這個(gè)大得多的多)
那么要快速執(zhí)行一次YOLO-V3,就必須執(zhí)行完一萬億次的加法乘法次數(shù)。
這個(gè)時(shí)候就來看了,比如IBM的POWER8,最先進(jìn)的服務(wù)器用超標(biāo)量CPU之一,4GHz,SIMD,128bit,假設(shè)是處理16bit的數(shù)據(jù),那就是8個(gè)數(shù),那么一個(gè)周期,最多執(zhí)行8個(gè)乘加計(jì)算。一次最多執(zhí)行16個(gè)操作。這還是理論上,其實(shí)是不大可能的。
那么CPU一秒鐘的巔峰計(jì)算次數(shù)=16X4Gops=64Gops。
這樣,可以算算CPU計(jì)算一次的時(shí)間了。
同樣的,換成GPU算算,也能知道執(zhí)行時(shí)間。因?yàn)閷?duì)GPU內(nèi)部結(jié)構(gòu)不熟,所以不做具體分析。
再來說說AI芯片。比如大名鼎鼎的谷歌的TPU1。
TPU1,大約700M Hz,有256X256尺寸的脈動(dòng)陣列,如下圖所示。一共256X256=64K個(gè)乘加單元,每個(gè)單元一次可執(zhí)行一個(gè)乘法和一個(gè)加法。那就是128K個(gè)操作。(乘法算一個(gè),加法再算一個(gè))
另外,除了脈動(dòng)陣列,還有其他模塊,比如激活等,這些里面也有乘法、加法等。
所以,看看TPU1一秒鐘的巔峰計(jì)算次數(shù)至少是=128K X 700MHz=89600Gops=大約90Tops。
對(duì)比一下CPU與TPU1,會(huì)發(fā)現(xiàn)計(jì)算能力有幾個(gè)數(shù)量級(jí)的差距,這就是為啥說CPU慢。
當(dāng)然,以上的數(shù)據(jù)都是完全最理想的理論值,實(shí)際情況,能夠達(dá)到5%吧。因?yàn)?,芯片上的存?chǔ)不夠大,所以數(shù)據(jù)會(huì)存儲(chǔ)在DRAM中,從DRAM取數(shù)據(jù)很慢的,所以,乘法邏輯往往要等待。另外,AI算法有許多層網(wǎng)絡(luò)組成,必須一層一層的算,所以,在切換層的時(shí)候,乘法邏輯又是休息的,所以,諸多因素造成了實(shí)際的芯片并不能達(dá)到利潤的計(jì)算峰值,而且差距還極大。
可能有人要說,搞研究慢一點(diǎn)也能將就用。
目前來看,神經(jīng)網(wǎng)絡(luò)的尺寸是越來越大,參數(shù)越來越多,遇到大型NN模型,訓(xùn)練需要花幾周甚至一兩個(gè)月的時(shí)候,你會(huì)耐心等待么?突然斷電,一切重來?(曾經(jīng)動(dòng)手訓(xùn)練一個(gè)寫小說的AI,然后,一次訓(xùn)練(50輪)需要大約一天一夜還多,記得如果第一天早上開始訓(xùn)練,需要到第二天下午才可能完成,這還是模型比較簡(jiǎn)單,數(shù)據(jù)只有幾萬條的小模型呀。)
修改了模型,需要幾個(gè)星期才能知道對(duì)錯(cuò),確定等得起?
突然有了TPU,然后你發(fā)現(xiàn),吃個(gè)午飯回來就好了,參數(shù)優(yōu)化一下,繼續(xù)跑,多么爽!
計(jì)算速度快,才能迅速反復(fù)迭代,研發(fā)出更強(qiáng)的AI模型。速度就是金錢。
GPU的內(nèi)核結(jié)構(gòu)不清楚,所以就不比較了。肯定的是,GPU還是比較快的,至少比CPU快得多,所以目前大多數(shù)都用GPU,這玩意隨便一個(gè)都能價(jià)格輕松上萬,太貴,而且,功耗高,經(jīng)常缺貨。不適合數(shù)據(jù)中心大量使用。
總的來說,CPU與GPU并不是AI專用芯片,為了實(shí)現(xiàn)其他功能,內(nèi)部有大量其他邏輯,而這些邏輯對(duì)于目前的AI算法來說是完全用不上的,所以,自然造成CPU與GPU并不能達(dá)到最優(yōu)的性價(jià)比。
谷歌花錢研發(fā)TPU,而且目前已經(jīng)出了TPU3,用得還挺歡,都開始支持谷歌云計(jì)算服務(wù)了,貌似6點(diǎn)幾美元每小時(shí)吧,不記得單位了,懶得查.
可見,谷歌覺得很有必要自己研發(fā)TPU。
就醬。
看到有答案點(diǎn)我名說不應(yīng)該用CPU做對(duì)比,這個(gè)鍋我不背。
做一點(diǎn)解釋。
目前在圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域,精度最高的算法就是基于深度學(xué)習(xí)的,傳統(tǒng)的機(jī)器學(xué)習(xí)的計(jì)算精度已經(jīng)被超越,目前應(yīng)用最廣的算法,估計(jì)非深度學(xué)習(xí)莫屬,而且,傳統(tǒng)機(jī)器學(xué)習(xí)的計(jì)算量與 深度學(xué)習(xí)比起來少很多,所以,我討論AI芯片時(shí)就針對(duì)計(jì)算量特別大的深度學(xué)習(xí)而言。畢竟,計(jì)算量小的算法,說實(shí)話,CPU已經(jīng)很快了。而且,CPU適合執(zhí)行調(diào)度復(fù)雜的算法,這一點(diǎn)是GPU與AI芯片都做不到的,所以他們?nèi)咧皇轻槍?duì)不同的應(yīng)用場(chǎng)景而已,都有各自的主場(chǎng)。
至于為何用了CPU做對(duì)比?
而沒有具體說GPU。是因?yàn)?,我說了,我目前沒有系統(tǒng)查看過GPU的論文,不了解GPU的情況,故不做分析。因?yàn)榉e累的緣故,比較熟悉超標(biāo)量CPU,所以就用熟悉的CPU做詳細(xì)比較。而且,小型的網(wǎng)絡(luò),完全可以用CPU去訓(xùn)練,沒啥大問題,最多慢一點(diǎn)。只要不是太大的網(wǎng)絡(luò)模型。
那些AI算法公司,比如曠世、商湯等,他們的模型很大,自然也不是一塊GPU就能搞定的。GPU的算力也是很有限的。
至于說CPU是串行,GPU是并行。
沒錯(cuò),但是不全面。只說說CPU串行。這位網(wǎng)友估計(jì)對(duì)CPU沒有非常深入的理解。我的回答中舉的CPU是IBM的POWER8,百度一下就知道,這是超標(biāo)量的服務(wù)器用CPU,目前來看,性能已經(jīng)是非常頂級(jí)的了,主頻4GHZ。不知是否注意到我說了這是SIMD?這個(gè)SIMD,就代表他可以同時(shí)執(zhí)行多條同樣的指令,這就是并行,而不是串行。單個(gè)數(shù)據(jù)是128bit的,如果是16bit的精度,那么一周期理論上最多可以計(jì)算八組數(shù)據(jù)的乘法或加法,或者乘加。這還不叫并行?只是并行的程度沒有GPU那么厲害而已,但是,這也是并行。
不知道為啥就不能用CPU來比較算力?
有評(píng)論很推崇GPU。說用CPU來做比較,不合適。
拜托,GPU本來是從CPU中分離出來專門處理圖像計(jì)算的,也就是說,GPU是專門處理圖像計(jì)算的。包括各種特效的顯示。這也是GPU的天生的缺陷,GPU更加針對(duì)圖像的渲染等計(jì)算算法。但是,這些算法,與深度學(xué)習(xí)的算法還是有比較大的區(qū)別,而我的回答里提到的AI芯片,比如TPU,這個(gè)是專門針對(duì)CNN等典型深度學(xué)習(xí)算法而開發(fā)的。另外,寒武紀(jì)的NPU,也是專門針對(duì)神經(jīng)網(wǎng)絡(luò)的,與TPU類似。
谷歌的TPU,寒武紀(jì)的DianNao,這些AI芯片剛出道的時(shí)候,就是用CPU/GPU來對(duì)比的。
無圖無真相,是吧?
看看,谷歌TPU論文的摘要直接對(duì)比了TPU1與CPU/GPU的性能比較結(jié)果,見紅色框:
看不清?
沒事,放大。
這就是摘要中介紹的TPU1與CPU/GPU的性能對(duì)比。
再來看看寒武紀(jì)DianNao的paper,摘要中直接就是DianNao與CPU的性能的比較,見紅色框:
回顧一下歷史。
上個(gè)世紀(jì)出現(xiàn)神經(jīng)網(wǎng)絡(luò)的時(shí)候,那一定是用CPU計(jì)算的。
比特幣剛出來,那也是用CPU在挖。目前已經(jīng)進(jìn)化成ASIC礦機(jī)了。比特大陸了解一下。
從2006年開始開啟的深度學(xué)習(xí)熱潮,CPU與GPU都能計(jì)算,發(fā)現(xiàn)GPU速度更快,但是貴啊,更多用的是CPU,而且,那時(shí)候GPU的CUDA可還不怎么樣,后來,隨著NN模型越來越大,GPU的優(yōu)勢(shì)越來越明顯,CUDA也越來越6,目前就成了GPU的專場(chǎng)。
寒武紀(jì)2014年的DianNao(NPU)比CPU快,而且更加節(jié)能。ASIC的優(yōu)勢(shì)很明顯啊。這也是為啥要開發(fā)ASIC的理由。
至于說很多公司的方案是可編程的,也就是大多數(shù)與FPGA配合。你說的是商湯、深鑒么?的確,他們發(fā)表的論文,就是基于FPGA的。
這些創(chuàng)業(yè)公司,他們更多研究的是算法,至于芯片,還不是重點(diǎn),另外,他們暫時(shí)還沒有那個(gè)精力與實(shí)力。FPGA非常靈活,成本不高,可以很快實(shí)現(xiàn)架構(gòu)設(shè)計(jì)原型,所以他們自然會(huì)選擇基于FPGA的方案。不過,最近他們都大力融資,官網(wǎng)也在招聘芯片設(shè)計(jì)崗位,所以,應(yīng)該也在涉足ASIC研發(fā)了。
如果以FPGA為代表的可編程方案真的有巨大的商業(yè)價(jià)值,那他們何必砸錢去做ASIC?
-
芯片
+關(guān)注
關(guān)注
456文章
50910瀏覽量
424506 -
asic
+關(guān)注
關(guān)注
34文章
1204瀏覽量
120545 -
cpu
+關(guān)注
關(guān)注
68文章
10873瀏覽量
212106 -
AI
+關(guān)注
關(guān)注
87文章
31042瀏覽量
269391
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論