在所有電力電子應用中,功率密度是關鍵指標之一,這主要由更高能效和更高開關頻率驅動。隨著基于硅的技術接近其發展極限,設計工程師現在正尋求寬禁帶技術如氮化鎵(GaN)來提供方案。
對于新技術而言,GaN本質上比其將取代的技術(硅)成本低。GaN器件與硅器件是在同一工廠用相同的制造程序生產出。因此,由于GaN器件小于等效硅器件,因此每個晶片可以生產更多的器件,從而降低了每個晶片的成本。
GaN有許多性能優勢,包括遠高于硅的電子遷移率(3.4eV對比1.1eV),這使其具有比硅高1000倍的電子傳導效率的潛力。值得注意的是,GaN的門極電荷(QG)較低,并且由于必須在每個開關周期內對其進行補充,因此GaN能夠以高達1 MHz的頻率工作,效率不會降低,而硅則難以達到100 kHz以上。此外,與硅不同,GaN沒有體二極管,其在AlGaN / GaN邊界表面的2DEG可以沿相反方向傳導電流(稱為“第三象限”操作)。因此,GaN沒有反向恢復電荷(QRR),使其非常適合硬開關應用。
在所有電力電子應用中,功率密度是關鍵指標之一,這主要由更高能效和更高開關頻率驅動。隨著基于硅的技術接近其發展極限,設計工程師現在正尋求寬禁帶技術如氮化鎵(GaN)來提供方案。
對于新技術而言,GaN本質上比其將取代的技術(硅)成本低。GaN器件與硅器件是在同一工廠用相同的制造程序生產出。因此,由于GaN器件小于等效硅器件,因此每個晶片可以生產更多的器件,從而降低了每個晶片的成本。
GaN有許多性能優勢,包括遠高于硅的電子遷移率(3.4eV對比1.1eV),這使其具有比硅高1000倍的電子傳導效率的潛力。值得注意的是,GaN的門極電荷(QG)較低,并且由于必須在每個開關周期內對其進行補充,因此GaN能夠以高達1 MHz的頻率工作,效率不會降低,而硅則難以達到100 kHz以上。此外,與硅不同,GaN沒有體二極管,其在AlGaN / GaN邊界表面的2DEG可以沿相反方向傳導電流(稱為“第三象限”操作)。因此,GaN沒有反向恢復電荷(QRR),使其非常適合硬開關應用。
最初采用GaN技術并增長的將是如低功率快速充電USB PD電源適配器和游戲類筆記本電腦高功率適配器等應用。這主要歸因于有控制器和驅動器可支持需要高開關頻率的這些應用,從而縮短了設計周期。隨著合適的驅動器、控制器和模塊方案可用于服務器、云和電信等更高功率的應用,那么GaN也將被采用。
-
GaN
+關注
關注
19文章
1933瀏覽量
73287
發布評論請先 登錄
相關推薦
評論