色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

【硬見小百科】看完這篇,請不要再說不懂MOSFET!

云創硬見 ? 來源:云創硬見 ? 2020-04-26 08:59 ? 次閱讀

01

認識功率器件

1.1 功率半導體器件在工業 、消費 、軍事等領域都有著廣泛應用 ,具有很高的戰略地位,下面我們從一張圖看功率器件的全貌:

1.2 功率半導體器件又可根據對電路信號的控程度分為全型 、半控型及不可;或按驅動電路信號 性質分為電壓驅動型 、電流驅動型等劃分類別 電流驅動型等劃分類別 電流驅動型等劃分類別 。

1.3 不同功率半導體器件 ,其承受電壓 、電流容量 、阻抗能力 、體積大小等特性也會不同 ,實際使用中 , 需要根據不同領域 、不同需求來選用合適的器件。

1.4 半導體行業從誕生至今 ,先后經歷了三代材料的變更程 ,截至目前 ,功率半導體器件領域仍主要采 用以 Si 為代表的第一半導體材料 。

1.5 匯總下半控型和全控型功率器件的特性

02

認識MOSFET

2.1 MOS管具有輸入阻抗高、噪聲低、熱穩定性好;制造工藝簡單、輻射強,因而通常被用于放大電路或開關電路
(1)主要選型參數:漏源電壓VDS(耐壓),ID 連續漏電流,RDS(on) 導通電阻,Ciss 輸入電容(結電容),品質因數FOM=Ron * Qg等。
(2)根據不同的工藝又分為
Trench MOS:溝槽型MOS,主要低壓領域100V內;SGT (Split Gate)MOS:分裂柵MOS,主要中低壓領域200V內;SJ MOS:超結MOS,主要在高壓領域 600-800V;
開關電源中,如漏極開路電路,漏極原封不動地接負載,叫開路漏極,開路漏極電路中不管負載接多高的電壓,都能夠接通和關斷負載電流。是理想的模擬開關器件。這就是MOS管做開關器件的原理(詳細請關注作者其他MOS詳解)。
2.2 從市場份額看,MOSFET幾乎都集中在國際大廠手中,其中英飛凌2015年收購了IR(美國國際整流器公司)成為行業龍頭,安森美也在2016年9月完成對仙童半導體的收購后,市占率躍升至第二,然后銷售排名分別是瑞薩東芝、萬國、ST、威世、安世、美格納等等;
與活躍于中國大陸的國際廠商相比,國產企業優勢不明顯,但這不能說國產沒有機會,中國大陸是世界上產業鏈最齊全的經濟活躍區,在功率半導體領域活躍著一批本土制造企業,目前已基本完成產業鏈布局,且處于快速發展中;特別是MOSFET領域,國產在中低壓領域替換進口品牌潛力最大,且部分國產、如士蘭、華潤微(中航)、吉林華微等都在努力進入世界排名;

03

主流MOS管品牌

3.1 MOS管分為幾大系列:美系、日系、韓系、國產。

美系:英飛凌、IR,仙童,安森美,ST,TIPI,AOS美國萬代半導體等;

日系:東芝,瑞薩,ROHM羅姆等;

韓系:美格納,KEC,AUK,森名浩,信安,KIA

國產:吉林華微電子股份有限公司,揚州揚杰電子科技股份有限公司,

杭州士蘭微電子股份有限公司,華潤微電子(重慶)有限公司,無錫新潔能,西安后裔,深圳銳俊半導體,無錫華潤華晶微電子有限公司,江蘇東晨電子科技有限公司(前身東光微),東微半導體,威兆半導體,蘇州硅能,無錫市芯途半導體有限公司

國產臺系:ANPEC,CET,友順UTC

04

MOS管封裝分類

按照安裝在PCB板上的方式來劃分,MOS管封裝主要有兩大類:插入式(Through Hole)和表面貼裝式(Surface Mount)。

插入式就是MOSFET的管腳穿過PCB板的安裝孔并焊接在PCB板上。常見的插入式封裝有:雙列直插式封裝(DIP)、晶體管外形封裝(TO)、插針網格陣列封裝(PGA)三種樣式。

插入式封裝

表面貼裝則是MOSFET的管腳及散熱法蘭焊接在PCB板表面的焊盤上。典型表面貼裝式封裝有:晶體管外形(D-PAK)、小外形晶體管(SOT)、小外形封裝(SOP)、方形扁平式封裝(QFP)、塑封有引線芯片載體(PLCC)等。

表面貼裝式封裝

隨著技術的發展,目前主板、顯卡等的PCB板采用直插式封裝方式的越來越少,更多地選用了表面貼裝式封裝方式。

1、雙列直插式封裝(DIP)

DIP封裝有兩排引腳,需要插入到具有DIP結構的芯片插座上,其派生方式為SDIP(Shrink DIP),即緊縮雙入線封裝,較DIP的針腳密度高6倍。

DIP封裝結構形式有:多層陶瓷雙列直插式DIP、單層陶瓷雙列直插式DIP、引線框架式DIP(含玻璃陶瓷封接式、塑料包封結構式、陶瓷低熔玻璃封裝式)等。DIP封裝的特點是可以很方便地實現PCB板的穿孔焊接,和主板有很好的兼容性。

但由于其封裝面積和厚度都比較大,而且引腳在插拔過程中很容易被損壞,可靠性較差;同時由于受工藝的影響,引腳一般都不超過100個,因此在電子產業高度集成化過程中,DIP封裝逐漸退出了歷史舞臺。

2、晶體管外形封裝(TO)

屬于早期的封裝規格,例如TO-3P、TO-247、TO-92、TO-92L、TO-220、TO-220F、TO-251等都是插入式封裝設計。

TO-3P/247:是中高壓、大電流MOS管常用的封裝形式,產品具有耐壓高、抗擊穿能力強等特點。

TO-220/220F:TO-220F是全塑封裝,裝到散熱器上時不必加絕緣墊;TO-220帶金屬片與中間腳相連,裝散熱器時要加絕緣墊。這兩種封裝樣式的MOS管外觀差不多,可以互換使用。

TO-251:該封裝產品主要是為了降低成本和縮小產品體積,主要應用于中壓大電流60A以下、高壓7N以下環境中。

TO-92:該封裝只有低壓MOS管(電流10A以下、耐壓值60V以下)和高壓1N60/65在采用,目的是降低成本。

近年來,由于插入式封裝工藝焊接成本高、散熱性能也不如貼片式產品,使得表面貼裝市場需求量不斷增大,也使得TO封裝發展到表面貼裝式封裝。TO-252(又稱之為D-PAK)和TO-263(D2PAK)就是表面貼裝封裝。

TO封裝產品外觀

TO252/D-PAK是一種塑封貼片封裝,常用于功率晶體管、穩壓芯片的封裝,是目前主流封裝之一。

采用該封裝方式的MOSFET有3個電極,柵極(G)、漏極(D)、源極(S)。

其中漏極(D)的引腳被剪斷不用,而是使用背面的散熱板作漏極(D),直接焊接在PCB上,一方面用于輸出大電流,一方面通過PCB散熱;所以PCB的D-PAK焊盤有三處,漏極(D)焊盤較大。其封裝規范如下:

TO-252/D-PAK封裝尺寸規格

TO-263是TO-220的一個變種,主要是為了提高生產效率和散熱而設計,支持極高的電流和電壓,在150A以下、30V以上的中壓大電流MOS管中較為多見。

除了D2PAK(TO-263AB)之外,還包括TO263-2、TO263-3、TO263-5、TO263-7等樣式,與TO-263為從屬關系,主要是引出腳數量和距離不同。

TO-263/D2PAK封裝尺寸規格

3、插針網格陣列封裝(PGA)

PGA(Pin Grid Array Package)芯片內外有多個方陣形的插針,每個方陣形插針沿芯片的四周間隔一定距離排列,根據管腳數目的多少,可以圍成2~5圈。安裝時,將芯片插入專門的PGA插座即可,具有插拔方便且可靠性高的優勢,能適應更高的頻率。

PGA封裝樣式

其芯片基板多數為陶瓷材質,也有部分采用特制的塑料樹脂來做基板,在工藝上,引腳中心距通常為2.54mm,引腳數從64到447不等。

這種封裝的特點是,封裝面積(體積)越小,能夠承受的功耗(性能)就越低,反之則越高。這種封裝形式芯片在早期比較多見,且多用于CPU等大功耗產品的封裝,如英特爾的80486、Pentium均采用此封裝樣式;不大為MOS管廠家所采納。

4、小外形晶體管封裝(SOT)

SOT(Small Out-Line Transistor)是貼片型小功率晶體管封裝,主要有SOT23、SOT89、SOT143、SOT25(即SOT23-5)等,又衍生出SOT323、SOT363/SOT26(即SOT23-6)等類型,體積比TO封裝小。

SOT封裝類型

SOT23是常用的三極管封裝形式,有3條翼形引腳,分別為集電極、發射極和基極,分別列于元件長邊兩側,其中,發射極和基極在同一側,常見于小功率晶體管、場效應管和帶電阻網絡的復合晶體管,強度好,但可焊性差,外形如下圖(a)所示。

SOT89具有3條短引腳,分布在晶體管的一側,另外一側為金屬散熱片,與基極相連,以增加散熱能力,常見于硅功率表面組裝晶體管,適用于較高功率的場合,外形如下圖(b)所示。

SOT143具有4條翼形短引腳,從兩側引出,引腳中寬度偏大的一端為集電極,這類封裝常見于高頻晶體管,外形如下圖(c)所示。

SOT252屬于大功率晶體管,3條引腳從一側引出,中間一條引腳較短,為集電極,與另一端較大的引腳相連,該引腳為散熱作用的銅片,外形如下圖(d)所示。

常見SOT封裝外形比較

主板上常用四端引腳的SOT-89 MOSFET。其規格尺寸如下:

SOT-89 MOSFET尺寸規格(單位:mm)

5、小外形封裝(SOP)

SOP(Small Out-Line Package)是表面貼裝型封裝之一,也稱之為SOL或DFP,引腳從封裝兩側引出呈海鷗翼狀(L字形)。材料有塑料和陶瓷兩種。

SOP封裝標準有SOP-8、SOP-16、SOP-20、SOP-28等,SOP后面的數字表示引腳數。MOSFET的SOP封裝多數采用SOP-8規格,業界往往把“P”省略,簡寫為SO(Small Out-Line)。

SOP-8封裝尺寸

SO-8為PHILIP公司率先開發,采用塑料封裝,沒有散熱底板,散熱不良,一般用于小功率MOSFET。

后逐漸派生出TSOP(薄小外形封裝)、VSOP(甚小外形封裝)、SSOP(縮小型SOP)、TSSOP(薄的縮小型SOP)等標準規格;其中TSOP和TSSOP常用于MOSFET封裝。

常用于MOS管的SOP派生規格

6、方形扁平式封裝(QFP)

QFP(Plastic Quad Flat Package)封裝的芯片引腳之間距離很小,管腳很細,一般在大規模或超大型集成電路中采用,其引腳數一般在100個以上。

用這種形式封裝的芯片必須采用SMT表面安裝技術將芯片與主板焊接起來。該封裝方式具有四大特點:

①適用于SMD表面安裝技術在PCB電路板上安裝布線;

②適合高頻使用;

③操作方便,可靠性高;

④芯片面積與封裝面積之間的比值較小。

與PGA封裝方式一樣,該封裝方式將芯片包裹在塑封體內,無法將芯片工作時產生的熱量及時導出,制約了MOSFET性能的提升;而且塑封本身增加了器件尺寸,不符合半導體向輕、薄、短、小方向發展的要求;另外,此類封裝方式是基于單顆芯片進行,存在生產效率低、封裝成本高的問題。

因此,QFP更適于微處理器/門陳列等數字邏輯LSI電路采用,也適于VTR信號處理、音響信號處理等模擬LSI電路產品封裝。

7、四邊無引線扁平封裝(QFN)

QFN(Quad Flat Non-leaded package)封裝四邊配置有電極接點,由于無引線,貼裝表現出面積比QFP小、高度比QFP低的特點;其中陶瓷QFN也稱為LCC(Leadless Chip Carriers),采用玻璃環氧樹脂印刷基板基材的低成本塑料QFN則稱為塑料LCC、PCLC、P-LCC等。

是一種焊盤尺寸小、體積小、以塑料作為密封材料的新興表面貼裝芯片封裝技術。

QFN主要用于集成電路封裝,MOSFET不會采用。不過因Intel提出整合驅動與MOSFET方案,而推出了采用QFN-56封裝(“56”指芯片背面有56個連接Pin)的DrMOS。

需要說明的是,QFN封裝與超薄小外形封裝(TSSOP)具有相同的外引線配置,而其尺寸卻比TSSOP的小62%。根據QFN建模數據,其熱性能比TSSOP封裝提高了55%,電性能(電感和電容)比TSSOP封裝分別提高了60%和30%。最大的缺點則是返修難度高。

采用QFN-56封裝的DrMOS

傳統的分立式DC/DC降壓開關電源無法滿足對更高功耗密度的要求,也不能解決高開關頻率下的寄生參數影響問題。

隨著技術的革新與進步,把驅動器和MOSFET整合在一起,構建多芯片模塊已經成為了現實,這種整合方式同時可以節省相當可觀的空間從而提升功耗密度,通過對驅動器和MOS管的優化提高電能效率和優質DC電流,這就是整合驅動IC的DrMOS。

瑞薩第2代DrMOS

經過QFN-56無腳封裝,讓DrMOS熱阻抗很低;借助內部引線鍵合以及銅夾帶設計,可最大程度減少外部PCB布線,從而降低電感和電阻。

另外,采用的深溝道硅(trench silicon)MOSFET工藝,還能顯著降低傳導、開關和柵極電荷損耗;并能兼容多種控制器,可實現不同的工作模式,支持主動相變換模式APS(Auto Phase Switching)。

除了QFN封裝外,雙邊扁平無引腳封裝(DFN)也是一種新的電子封裝工藝,在安森美的各種元器件中得到了廣泛采用,與QFN相比,DFN少了兩邊的引出電極。

8、塑封有引線芯片載體(PLCC)

PLCC(Plastic Quad Flat Package)外形呈正方形,尺寸比DIP封裝小得多,有32個引腳,四周都有管腳,引腳從封裝的四個側面引出,呈丁字形,是塑料制品。

其引腳中心距1.27mm,引腳數從18到84不等,J形引腳不易變形,比QFP容易操作,但焊接后的外觀檢查較為困難。PLCC封裝適合用SMT表面安裝技術在PCB上安裝布線,具有外形尺寸小、可靠性高的優點。

PLCC封裝是比較常見,用于邏輯LSI、DLD(或程邏輯器件)等電路,主板BIOS常采用的這種封裝形式,不過目前在MOS管中較少見。

PLCC封裝樣式

主流企業的封裝與改進

由于CPU的低電壓、大電流的發展趨勢,對MOSFET提出輸出電流大,導通電阻低,發熱量低散熱快,體積小的要求。MOSFET廠商除了改進芯片生產技術和工藝外,也不斷改進封裝技術,在與標準外形規格兼容的基礎上,提出新的封裝外形,并為自己研發的新封裝注冊商標名稱。

1、瑞薩(RENESAS)WPAK、LFPAK和LFPAK-I封裝

WPAK是瑞薩開發的一種高熱輻射封裝,通過仿D-PAK封裝那樣把芯片散熱板焊接在主板上,通過主板散熱,使小形封裝的WPAK也可以達到D-PAK的輸出電流。WPAK-D2封裝了高/低2顆MOSFET,減小布線電感。

瑞薩WPAK封裝尺寸

LFPAK和LFPAK-I是瑞薩開發的另外2種與SO-8兼容的小形封裝。LFPAK類似D-PAK,但比D-PAK體積小。LFPAK-i是將散熱板向上,通過散熱片散熱。

瑞薩LFPAK和LFPAK-I封裝

2、威世(Vishay)Power-PAK和Polar-PAK封裝

Power-PAK是威世公司注冊的MOSFET封裝名稱。Power-PAK包括有Power-PAK1212-8、Power-PAK SO-8兩種規格。

威世Power-PAK1212-8封裝

威世Power-PAK SO-8封裝

Polar PAK是雙面散熱的小形封裝,也是威世核心封裝技術之一。Polar PAK與普通的so-8封裝相同,其在封裝的上、下兩面均設計了散熱點,封裝內部不易蓄熱,能夠將工作電流的電流密度提高至SO-8的2倍。目前威世已向意法半導體公司提供Polar PAK技術授權。

威世Polar PAK封裝

3、安森美(Onsemi)SO-8和WDFN8扁平引腳(Flat Lead)封裝

安美森半導體開發了2種扁平引腳的MOSFET,其中SO-8兼容的扁平引腳被很多板卡采用。安森美新近推出的NVMx和NVTx功率MOSFET就采用了緊湊型DFN5(SO-8FL)和WDFN8封裝,可最大限度地降低導通損耗,另外還具有低QG和電容,可將驅動器損耗降到最低的特性。

安森美SO-8扁平引腳封裝

安森美WDFN8封裝

4、恩智浦(NXP)LFPAK和QLPAK封裝

恩智浦(原Philps)對SO-8封裝技術改進為LFPAK和QLPAK。其中LFPAK被認為是世界上高度可靠的功率SO-8封裝;而QLPAK具有體積小、散熱效率更高的特點,與普通SO-8相比,QLPAK占用PCB板的面積為6*5mm,同時熱阻為1.5k/W。

恩智浦LFPAK封裝

恩智浦QLPAK封裝

5、意法(ST)半導體PowerSO-8封裝

意法半導體功率MOSFET芯片封裝技術有SO-8、PowerSO-8、PowerFLAT、DirectFET、PolarPAK等,其中PowerSO-8正是SO-8的改進版,此外還有PowerSO-10、PowerSO-20、TO-220FP、H2PAK-2等封裝。

意法半導體Power SO-8封裝

6、飛兆(Fairchild)半導體Power 56封裝

Power 56是Farichild的專用稱呼,正式名稱為DFN 5×6。其封裝面積跟常用的TSOP-8不相上下,而薄型封裝又節約元件凈空高度,底部Thermal-Pad設計降低了熱阻,因此很多功率器件廠商都部署了DFN 5×6。

Fairchild Power 56封裝

7、國際整流器(IR)Direct FET封裝

Direct FET能在SO-8或更小占位面積上,提供高效的上部散熱,適用于計算機、筆記本電腦、電信和消費電子設備的AC-DC及DC-DC功率轉換應用。與標準塑料分立封裝相比,DirectFET的金屬罐構造具有雙面散熱功能,因而可有效將高頻DC-DC降壓式轉換器的電流處理能力增加一倍。

Direct FET封裝屬于反裝型,漏極(D)的散熱板朝上,并覆蓋金屬外殼,通過金屬外殼散熱。Direct FET封裝極大地改善了散熱,并且占用空間更小,散熱良好。

國際整流器Direct FET封裝

IR Direct FET封裝系列部分產品規格

內部封裝改進方向

除了外部封裝,基于電子制造對MOS管的需求的變化,內部封裝技術也在不斷得到改進,這主要從三個方面進行:改進封裝內部的互連技術、增加漏極散熱板、改變散熱的熱傳導方向。

1、封裝內部的互連技術

TO、D-PAK、SOT、SOP等采用焊線式的內部互連封裝技術,當CPU或GPU供電發展到低電壓、大電流時代,焊線式的SO-8封裝就受到了封裝電阻、封裝電感、PN結到PCB和外殼熱阻等因素的限制。

SO-8內部封裝結構

這四種限制對其電學和熱學性能有著極大的影響。隨著電流密度的提高,MOSFET廠商在采用SO-8尺寸規格時,同步對焊線互連形式進行了改進,用金屬帶、或金屬夾板代替焊線,以降低封裝電阻、電感和熱阻。

標準型SO-8與無導線SO-8封裝對比

國際整流器(IR)的改進技術稱之為Copper Strap;威世(Vishay)稱之為Power Connect技術;飛兆半導體則叫做Wireless Package。新技術采用銅帶取代焊線后,熱阻降低了10-20%,源極至封裝的電阻降低了61%。

國際整流器的Copper Strap技術

威世的Power Connect技術

飛兆半導體的Wirless Package技術

2、增加漏極散熱板

標準的SO-8封裝采用塑料將芯片包圍,低熱阻的熱傳導通路只是芯片到PCB的引腳。而底部緊貼PCB的塑料外殼是熱的不良導體,故而影響了漏極的散熱。

技術改進就是要除去引線框下方的塑封化合物,方法是讓引線框金屬結構直接或加一層金屬板與PCB接觸,并焊接到PCB焊盤上,這樣就提供了更多的散熱接觸面積,把熱量從芯片上帶走;同時也可以制成更薄的器件。

威世Power-PAK技術

威世的Power-PAK、法意半導體的Power SO-8、安美森半導體的SO-8 Flat Lead、瑞薩的WPAK/LFPAK、飛兆半導體的Power 56和Bottomless Package都采用了此散熱技術。

3、改變散熱的熱傳導方向

Power-PAK的封裝雖然顯著減小了芯片到PCB的熱阻,但當電流需求繼續增大時,PCB同時會出現熱飽和現象。所以散熱技術的進一步改進就是改變散熱方向,讓芯片的熱量傳導到散熱器而不是PCB。

瑞薩LFPAK-i封裝

瑞薩的LFPAK-I封裝、國際整流器的Direct FET封裝均是這種散熱技術的典型代表。

總結

未來,隨著電子制造業繼續朝著超薄、小型化、低電壓、大電流方向的發展,MOS管的外形及內部封裝結構也會隨之改變,以更好適應制造業的發展需求。另外,為降低電子制造商的選用門檻,MOS管向模塊化、系統級封裝方向發展的趨勢也將越來越明顯,產品將從性能、成本等多維度協調發展。

而封裝作為MOS管選型的重要參考因素之一,不同的電子產品有不同的電性要求,不同的安裝環境也需要匹配的尺寸規格來滿足。實際選用中,應在大原則下,根據實際需求情況來做抉擇。

有些電子系統受制于PCB的尺寸和內部的高度,如通信系統的模塊電源由于高度的限制通常采用DFN5*6、DFN3*3的封裝;在有些ACDC的電源中,使用超薄設計或由于外殼的限制,適于裝配TO220封裝的功率MOS管,此時引腳可直接插到根部,而不適于使用TO247封裝的產品;也有些超薄設計需要將器件管腳折彎平放,這會加大MOS管選用的復雜度。

05

如何選取MOSFET

一位工程師曾經對我講,他從來不看MOSFET數據表的第一頁,因為“實用”的信息只在第二頁以后才出現。事實上,MOSFET數據表上的每一頁都包含有對設計者非常有價值的信息。但人們不是總能搞得清楚該如何解讀制造商提供的數據。本文概括了一些MOSFET的關鍵指標,這些指標在數據表上是如何表述的,以及你理解這些指標所要用到的清晰圖片。像大多數電子器件一樣,MOSFET也受到工作溫度的影響。所以很重要的一點是了解測試條件,所提到的指標是在這些條件下應用的。還有很關鍵的一點是弄明白你在“產品簡介”里看到的這些指標是“最大”或是“典型”值,因為有些數據表并沒有說清楚。

電壓等級

確定MOSFET的首要特性是其漏源電壓VDS,或“漏源擊穿電壓”,這是在柵極短路到源極,漏極電流在250μA情況下,MOSFET所能承受的保證不損壞的最高電壓。VDS也被稱為“25℃下的絕對最高電壓”,但是一定要記住,這個絕對電壓與溫度有關,而且數據表里通常有一個“VDS溫度系數”。你還要明白,最高VDS是直流電壓加上可能在電路里存在的任何電壓尖峰和紋波。例如,如果你在電壓30V并帶有100mV、5ns尖峰的電源里使用30V器件,電壓就會超過器件的絕對最高限值,器件可能會進入雪崩模式。在這種情況下,MOSFET的可靠性沒法得到保證。

在高溫下,溫度系數會顯著改變擊穿電壓。例如,一些600V電壓等級的N溝道MOSFET的溫度系數是正的,在接近最高結溫時,溫度系數會讓這些MOSFET變得象650V MOSFET。很多MOSFET用戶的設計規則要求10%~20%的降額因子。在一些設計里,考慮到實際的擊穿電壓比25℃下的額定數值要高5%~10%,會在實際設計中增加相應的有用設計裕量,對設計是很有利的。

對正確選擇MOSFET同樣重要的是理解在導通過程中柵源電壓VGS的作用。這個電壓是在給定的最大RDS(on)條件下,能夠確保MOSFET完全導通的電壓。這就是為什么導通電阻總是與VGS水平關聯在一起的原因,而且也是只有在這個電壓下才能保證器件導通。一個重要的設計結果是,你不能用比用于達到RDS(on)額定值的最低VGS還要低的電壓,來使MOSFET完全導通。例如,用3.3V微控制器驅動MOSFET完全導通,你需要用在VGS= 2.5V或更低條件下能夠導通的MOSFET。

導通電阻,柵極電荷,以及“優值系數”

MOSFET的導通電阻總是在一個或多個柵源電壓條件下確定的。最大RDS(on)限值可以比典型數值高20%~50%。RDS(on)最大限值通常指的25℃結溫下的數值,而在更高的溫度下,RDS(on)可以增加30%~150%,如圖1所示。由于RDS(on)隨溫度而變,而且不能保證最小的電阻值,根據RDS(on)來檢測電流不是很準確的方法。

圖1 RDS(on)在最高工作溫度的30%~150%這個范圍內隨溫度增加而增加

導通電阻對N溝道和P溝道MOSFET都是十分重要的。在開關電源中,Qg是用在開關電源里的N溝道MOSFET的關鍵選擇標準,因為Qg會影響開關損耗。這些損耗有兩個方面影響:一個是影響MOSFET導通和關閉的轉換時間;另一個是每次開關過程中對柵極電容充電所需的能量。要牢記的一點是,Qg取決于柵源電壓,即使用更低的Vgs可以減少開關損耗。

作為一種快速比較準備用在開關應用里MOSFET的方式,設計者經常使用一個單數公式,公式包括表示傳導損耗RDS(on)及表示開關損耗的Qg:RDS(on) xQg。這個“優值系數”(FOM)總結了器件的性能,可以用典型值或最大值來比較MOSFET。要保證在器件中進行準確的比較,你需要確定用于RDS(on) 和Qg的是相同的VGS,在公示里典型值和最大值沒有碰巧混在一起。較低的FOM能讓你在開關應用里獲得更好的性能,但是不能保證這一點。只有在實際的電路里才能獲得最好的比較結果,在某些情況下可能需要針對每個MOSFET對電路進行微調。

額定電流和功率耗散

基于不同的測試條件,大多數MOSFET在數據表里都有一個或多個的連續漏極電流。你要仔細看看數據表,搞清楚這個額定值是在指定的外殼溫度下(比如TC = 25℃),或是環境溫度(比如TA = 25℃)。這些數值當中哪些是最相關將取決于器件的特性和應用(見圖2)。

圖2 全部絕對最大電流和功率數值都是真實的數據

對于用在手持設備里的小型表面貼裝器件,關聯度最高的電流等級可能是在70℃環境溫度下的電流,對于有散熱片和強制風冷的大型設備,在TA = 25℃下的電流等級可能更接近實際情況。對于某些器件來說,管芯在其最高結溫下能夠處理的電流要高于封裝所限定的電流水平,在一些數據表,這種“管芯限定”的電流等級是對“封裝限定”電流等級的額外補充信息,可以讓你了解管芯的魯棒性。

對于連續的功率耗散也要考慮類似的情況,功耗耗散不僅取決于溫度,而且取決于導通時間。設想一個器件在TA= 70℃情況下,以PD=4W連續工作10秒鐘。構成“連續”時間周期的因素會根據MOSFET封裝而變化,所以你要使用數據表里的標準化熱瞬態阻抗圖,看經過10秒、100秒或10分鐘后的功率耗散是什么樣的。如圖3所示,這個專用器件經過10秒脈沖后的熱阻系數大約是0.33,這意味著經過大約10分鐘后,一旦封裝達到熱飽和,器件的散熱能力只有1.33W而不是4W,盡管在良好冷卻的情況下器件的散熱能力可以達到2W左右。

圖3 MOSFET在施加功率脈沖情況下的熱阻

實際上,我們可以把MOSFET選型分成四個步驟。

第一步:選用N溝道還是P溝道

為設計選擇正確器件的第一步是決定采用N溝道還是P溝道MOSFET。在典型的功率應用中,當一個MOSFET接地,而負載連接到干線電壓上時,該MOSFET就構成了低壓側開關。在低壓側開關中,應采用N溝道MOSFET,這是出于對關閉或導通器件所需電壓的考慮。當MOSFET連接到總線及負載接地時,就要用高壓側開關。通常會在這個拓撲中采用P溝道MOSFET,這也是出于對電壓驅動的考慮。

要選擇適合應用的器件,必須確定驅動器件所需的電壓,以及在設計中最簡易執行的方法。下一步是確定所需的額定電壓,或者器件所能承受的最大電壓。額定電壓越大,器件的成本就越高。根據實踐經驗,額定電壓應當大于干線電壓或總線電壓。這樣才能提供足夠的保護,使MOSFET不會失效。就選擇MOSFET而言,必須確定漏極至源極間可能承受的最大電壓,即最大VDS。知道MOSFET能承受的最大電壓會隨溫度而變化這點十分重要。設計人員必須在整個工作溫度范圍內測試電壓的變化范圍。額定電壓必須有足夠的余量覆蓋這個變化范圍,確保電路不會失效。設計工程師需要考慮的其他安全因素包括由開關電子設備(如電機或變壓器)誘發的電壓瞬變。不同應用的額定電壓也有所不同;通常,便攜式設備為20V、FPGA電源為20~30V、85~220VAC應用為450~600V。

第二步:確定額定電流

第二步是選擇MOSFET的額定電流。視電路結構而定,該額定電流應是負載在所有情況下能夠承受的最大電流。與電壓的情況相似,設計人員必須確保所選的MOSFET能承受這個額定電流,即使在系統產生尖峰電流時。兩個考慮的電流情況是連續模式和脈沖尖峰。在連續導通模式下,MOSFET處于穩態,此時電流連續通過器件。脈沖尖峰是指有大量電涌(或尖峰電流)流過器件。一旦確定了這些條件下的最大電流,只需直接選擇能承受這個最大電流的器件便可。

選好額定電流后,還必須計算導通損耗。在實際情況下,MOSFET并不是理想的器件,因為在導電過程中會有電能損耗,這稱之為導通損耗。MOSFET在“導通”時就像一個可變電阻,由器件的RDS(ON)所確定,并隨溫度而顯著變化。器件的功率耗損可由Iload2×RDS(ON)計算,由于導通電阻隨溫度變化,因此功率耗損也會隨之按比例變化。對MOSFET施加的電壓VGS越高,RDS(ON)就會越小;反之RDS(ON)就會越高。對系統設計人員來說,這就是取決于系統電壓而需要折中權衡的地方。對便攜式設計來說,采用較低的電壓比較容易(較為普遍),而對于工業設計,可采用較高的電壓。注意RDS(ON)電阻會隨著電流輕微上升。關于RDS(ON)電阻的各種電氣參數變化可在制造商提供的技術資料表中查到。

技術對器件的特性有著重大影響,因為有些技術在提高最大VDS時往往會使RDS(ON)增大。對于這樣的技術,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,從而增加與之配套的封裝尺寸及相關的開發成本。業界現有好幾種試圖控制晶片尺寸增加的技術,其中最主要的是溝道和電荷平衡技術。

在溝道技術中,晶片中嵌入了一個深溝,通常是為低電壓預留的,用于降低導通電阻RDS(ON)。為了減少最大VDS對RDS(ON)的影響,開發過程中采用了外延生長柱/蝕刻柱工藝。例如,飛兆半導體開發了稱為SuperFET的技術,針對RDS(ON)的降低而增加了額外的制造步驟。

這種對RDS(ON)的關注十分重要,因為當標準MOSFET的擊穿電壓升高時,RDS(ON)會隨之呈指數級增加,并且導致晶片尺寸增大。SuperFET工藝將RDS(ON)與晶片尺寸間的指數關系變成了線性關系。這樣,SuperFET器件便可在小晶片尺寸,甚至在擊穿電壓達到600V的情況下,實現理想的低RDS(ON)。結果是晶片尺寸可減小達35%。而對于最終用戶來說,這意味著封裝尺寸的大幅減小。

第三步:確定熱要求

選擇MOSFET的下一步是計算系統的散熱要求。設計人員必須考慮兩種不同的情況,即最壞情況和真實情況。建議采用針對最壞情況的計算結果,因為這個結果提供更大的安全余量,能確保系統不會失效。在MOSFET的資料表上還有一些需要注意的測量數據;比如封裝器件的半導體結與環境之間的熱阻,以及最大的結溫。

器件的結溫等于最大環境溫度加上熱阻與功率耗散的乘積(結溫=最大環境溫度+[熱阻×功率耗散])。根據這個方程可解出系統的最大功率耗散,即按定義相等于I2×RDS(ON)。由于設計人員已確定將要通過器件的最大電流,因此可以計算出不同溫度下的RDS(ON)。值得注意的是,在處理簡單熱模型時,設計人員還必須考慮半導體結/器件外殼及外殼/環境的熱容量;即要求印刷電路板和封裝不會立即升溫。

雪崩擊穿是指半導體器件上的反向電壓超過最大值,并形成強電場使器件內電流增加。該電流將耗散功率,使器件的溫度升高,而且有可能損壞器件。半導體公司都會對器件進行雪崩測試,計算其雪崩電壓,或對器件的穩健性進行測試。計算額定雪崩電壓有兩種方法;一是統計法,另一是熱計算。而熱計算因為較為實用而得到廣泛采用。不少公司都有提供其器件測試的詳情,如飛兆半導體提供了“Power MOSFET Avalanche Guidelines”( Power MOSFET Avalanche Guidelines--可以到Fairchild網站去下載)。除計算外,技術對雪崩效應也有很大影響。例如,晶片尺寸的增加會提高抗雪崩能力,最終提高器件的穩健性。對最終用戶而言,這意味著要在系統中采用更大的封裝件。

第四步:決定開關性能

選擇MOSFET的最后一步是決定MOSFET的開關性能。影響開關性能的參數有很多,但最重要的是柵極/漏極、柵極/ 源極及漏極/源極電容。這些電容會在器件中產生開關損耗,因為在每次開關時都要對它們充電。MOSFET的開關速度因此被降低,器件效率也下降。為計算開關過程中器件的總損耗,設計人員必須計算開通過程中的損耗(Eon)和關閉過程中的損耗(Eoff)。MOSFET開關的總功率可用如下方程表達:Psw=(Eon+Eoff)×開關頻率。而柵極電荷(Qgd)對開關性能的影響最大。

基于開關性能的重要性,新的技術正在不斷開發以解決這個開關問題。芯片尺寸的增加會加大柵極電荷;而這會使器件尺寸增大。為了減少開關損耗,新的技術如溝道厚底氧化已經應運而生,旨在減少柵極電荷。舉例說,SuperFET這種新技術就可通過降低RDS(ON)和柵極電荷(Qg),最大限度地減少傳導損耗和提高開關性能。這樣,MOSFET就能應對開關過程中的高速電壓瞬變(dv/dt)和電流瞬變(di/dt),甚至可在更高的開關頻率下可靠地工作。

lw

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7185

    瀏覽量

    213470
  • 半導體
    +關注

    關注

    334

    文章

    27432

    瀏覽量

    219267
  • 電路信號
    +關注

    關注

    0

    文章

    6

    瀏覽量

    7574
收藏 人收藏

    評論

    相關推薦

    百科啟動“繁星計劃”

    近日,百科攜手中國科協、中國科學院大學共同舉辦了史記2024·科學百科100詞發布會,并在此盛會上正式啟動了“繁星計劃”。這一計劃的核心目標在于利用前沿的AI技術,包括數字人、智能體等,以及
    的頭像 發表于 12-31 10:26 ?103次閱讀

    半導體術語小百科

    面對半導體行業的高速發展,掌握核心術語不僅是行業人的基本功,更是溝通無礙的關鍵。無論你是剛入行的新手,還是經驗豐富的達人,這份“半導體術語小百科”將帶你走進從硅到微芯片、從前端到后端的每一環節。
    的頭像 發表于 11-20 11:39 ?385次閱讀

    靜壓式液位變送器-全球百科

    變送器
    嘉可自動化儀表
    發布于 :2024年11月12日 08:41:09

    中國科技創新風向標!E維智庫攜手明星企業強強合作,解讀科技未來

    10月22日,由EEVIA舉辦的第12屆中國科技產業鏈創新趨勢峰會在深圳灣萬怡酒店隆重召開。構筑新質生產力,科技將是不可或缺的重要引擎。此次峰會匯聚了眾多行業精英、專家學者以及家媒體代表,共同探討
    的頭像 發表于 11-07 18:52 ?1899次閱讀
    中國<b class='flag-5'>硬</b>科技創新風向標!E維智庫攜手明星企業強強合作,解讀<b class='flag-5'>硬</b>科技未來

    鴻蒙智行再迎OTA升級,車載小藝化身私人用車顧問、百科導師

    近期,鴻蒙智行迎來重磅OTA升級,此次升級的功能中,讓問界M5、M7車主們翹首以盼的大模型車載小藝全新“上車”,解鎖眾多寶藏語音技能。在盤古大模型賦能下,小藝化身“私人用車顧問”、“百科小導師”等
    的頭像 發表于 10-30 14:41 ?238次閱讀
    鴻蒙智行再迎OTA升級,車載小藝化身私人用車顧問、<b class='flag-5'>百科</b>導師

    名單公布!【書籍評測活動NO.49】大模型啟示錄:一本AI應用百科全書

    大家了解全球最領先的大模型場景。 本書像 一本AI應用百科全書 ,給予讀者落地大模型時的啟發。 本書的作者來自大模型應用公司微軟Copilot的產品經理、最前沿的大模型研究員、國際對沖基金、云廠商前
    發表于 10-28 15:34

    PCM1798能解DSD嗎?是硬件控制?如何連接?

    PCM1798能解DSD嗎?是硬件控制?如何連接?參考手冊上怎么沒有看到DSD相關的引腳說明與音頻數據格式選擇引腳配置呢?
    發表于 10-28 06:02

    機房監控,機房監控百科

    機房監控是現代數據中心管理不可或缺的一部分,它直接關系到系統的穩定運行、數據的安全保護以及故障的快速響應。一個完善的機房監控系統能夠實時監測機房內的環境參數、設備狀態及安全情況,確保數據中心高效、可靠地運行。以下是一篇關于機房監控的詳細介紹。
    的頭像 發表于 08-22 17:34 ?300次閱讀

    鹽霧試驗箱的百科介紹

    一、鹽霧腐蝕試驗箱通過考核對材料及其防護層的鹽霧腐蝕的能力,以及相似防護層的工藝質量比較,同時可考核某些產品抗鹽霧腐蝕的能力;該產品適用于零部件、電子元件、金屬材料的防護層以及工業產品的鹽霧腐蝕試驗。二、設備組織構造:1.整體模壓經高溫焊接而成、耐腐蝕、易清潔、無泄露現象。2.箱蓋采用透明材料可清楚看到箱內測試物品和噴霧狀況。3.線路控制板及其它元氣件均固定在便于檢查和維護的位置,采用門鎖開啟式邊
    的頭像 發表于 06-17 16:56 ?449次閱讀
    鹽霧試驗箱的<b class='flag-5'>百科</b>介紹

    廣東云百科技致力于推動智能車聯網行業的創新與發展

    “ 2024年5月14日廣東省物聯網協會在廣州市組織并主持了由廣東云百科技有限公司為主要完成單位完成的《標準化車聯網接入服務關鍵技術》科技成果評價會。評價委員會由廣州大學、華南師范大學、華南理工大學、廣東技術師范學院、廣東省物聯網協會等專家組成。”
    的頭像 發表于 05-16 10:23 ?1219次閱讀

    百科技宣布與SK On簽訂《合作備忘錄》

    本周,容百科技宣布與SK On簽訂《合作備忘錄》,雙方將圍繞三元和磷酸錳鐵鋰正極開展深度合作。
    的頭像 發表于 03-29 09:56 ?463次閱讀

    氣密性檢測小百科:檢測儀的那些事兒

    氣密性檢測在工業生產和質量控制中具有重要意義,主要應用于防水檢測、密封檢測和泄漏檢測等領域。下面將詳細介紹氣密性檢測的相關知識,包括其工作原理、應用領域和未來發展趨勢等。一、氣密性檢測的工作原理氣密性檢測的基本原理是通過向被測物體內部充氣,然后檢測氣體壓力的變化來判斷被測物體的氣密性。在氣密性檢測過程中,首先需要將被測物體放置在密封腔中與測試儀器連接,然后向
    的頭像 發表于 02-28 11:50 ?522次閱讀
    氣密性檢測<b class='flag-5'>小百科</b>:檢測儀的那些事兒

    什么是開關?什么是軟開關 開關和軟開關的優缺點

    什么是開關?什么是軟開關 開關和軟開關的優缺點 開關和軟開關是電力系統中常用的兩種開關方式。它們在功率傳輸和電力控制方面有著不同的特點和應用。 開關是通過物理機械開關,以切斷或
    的頭像 發表于 02-20 11:43 ?7385次閱讀

    百科技攜手韓國LGES共探新能源技術先機

    據悉,此次簽約時雙方優勢互補的有力體現。作為全球領先的新能源材料研發制造商,容百科技在鋰離子電池材料方面具有深厚的技術儲備;而韓國LG能源解決方案公司則擁有豐富的項目管理經驗和前沿科研實力。
    的頭像 發表于 02-03 14:19 ?724次閱讀

    2024年,不要再喊國產芯片替代

    2024年,是國產芯片的分水嶺,強者愈強,弱者愈弱。從今以后,不要再講國產芯片替代,要講芯片性能和競爭力,國產芯片替代的篇章就此翻過。 這五年,給了國產芯片替代機遇和充分的時間窗口,市場給機會
    的頭像 發表于 01-25 11:50 ?845次閱讀
    主站蜘蛛池模板: 动漫美女无衣| 亚洲色图激情文学| 色小姐.com| 在线中文字幕网站| 囯产愉拍亚洲精品一区| 久久橹| 涩涩网站在线看| 99热免费精品店| 葵司中文第一次大战黑人| 羞羞影院午夜男女爽爽影院网站| 在线播放毛片| 国产亚洲精品久久777777| 披黑人猛躁10次高潮| 中国明星16xxxxhd| 婷婷综合亚洲爱久久| 99九九99九九九视频精品| 娇小亚裔被两个黑人| 无修肉动漫在线观看影片| FREESEXVIDEO 性老少配| 久久亚洲国产成人影院| 亚洲 日本 天堂 国产 在线| 成3d漫二区三区四区| 亚洲 欧美 另类 中文 在线| 99青草青草久热精品视频| 久久黄色免费网站| 亚洲国产中文字幕新在线| 国产成人亚洲精品午夜国产馆| 欧美国产成人在线| 799是什么意思网络用语| 久久精品国产欧美成人| 亚洲一区电影在线观看| 好男人午夜www视频在线观看| 涩涩视频下载| 国产成人a在一区线观看高清| 欧美高清videosgratis高| 69国产精品成人无码视频| 老司机亚洲精品影院在线观看| 亚洲色图激情小说| 久久精品中文字幕有码日本| 影音先锋av色咪影院| 久久视热频国只有精品|