OXC的應用領域
光交叉互連開關(OXC)是一種N×N端口的矩陣光開關,可用于構建CDC ROADM(無色、無方向性、無競爭的可重構光上/下路復用器),如圖1所示。
圖1. 基于WSS和OXC的CDC ROADM結構
基于1×N端口光開關構建的OXC
OXC可以通過1×N端口的光開關來構建,如圖2所示,為了構建一個N×N端口的OXC模塊,需要2N個1×N端口的光開關,隨著端口數(shù)N的增加,OXC模塊的尺寸和成本急劇增加,因此這種OXC的端口數(shù)通常限于32×32端口。
圖2. 以16個1×8端口光開關構建8×8端口OXC
基于2D MEMS 技術的OXC
實現(xiàn)OXC的第二種技術方案是基于MEMS微鏡陣列的Cross-Bar光開關,日本東京大學的H. Toshiyoshi和H. Fujita于1996年報道了第一個基于MEMS技術、具有端口擴展?jié)摿Φ腃ross-Bar光開關,如圖3所示。所報道的器件只有2個輸入端口和2個輸出端口,光路切換是通過4個MEMS微鏡來實現(xiàn)的,每個微鏡有兩個狀態(tài),平置于基片上讓光束通過(Off狀態(tài))或者直立于基片上以反射光束(On狀態(tài))。
圖3. 第一個基于MEMS扭鏡的Cross-Bar矩陣光開關
MEMS芯片和單個微鏡的SEM照片,以及扭鏡的結構示意圖,如圖4所示。微鏡以多晶硅梁支撐,當電極未加偏置電壓時,微鏡保持平置狀態(tài);加電時在靜電引力的驅動下,微鏡直立于基片上。
圖4. MEMS扭鏡的SEM照片和結構示意圖
AT&T實驗室的L.Y. Lin等人于1998年報道了第一個基于2D MEMS技術的矩陣光開關,如圖5所示,為了實現(xiàn)N×N端口光開關,需要一個N×N規(guī)模的微鏡陣列。該器件的所有光路都在一個平面內,這也是為何它被稱為2D MEMS光開關。
圖5. 第一個2D MEMS矩陣光開關結構
光路的切換是通過圖6所示的微鏡來實現(xiàn)的,微鏡被鉸鏈結構連接在基底上,兩個拉桿的一端鏈接微鏡,另一端鏈接一個位移臺,位移臺被一個刮板式微致動器驅動,把微鏡向前拉。微鏡在被拉動的過程中發(fā)生偏轉。
圖6. 微鏡結構示意圖
OMM公司的Li Fan等人于2002年報道了另一種用于矩陣開關的MEMS微鏡陣列,如圖7所示。
圖7. OMM公司的Li Fan等人報道的2D MEMS微鏡陣列
基于2D MEMS微鏡陣列的矩陣光開關,具有結構簡單和易于封裝的優(yōu)勢,但是其擴展性有限。從圖5中可以看到,對不同的端口鏈接關系,光路長度差別很大,這將會引入耦合損耗和影響損耗均勻性。對光程差異的容差取決于自由空間光學結構中的光束尺寸,根據(jù)式(1),光斑ω0越小則其越發(fā)散,根據(jù)式(2)得到其準直距離越短。
兩根單模光纖SMF之間的耦合情況如圖8(a)所示,隨著光纖端面之間的間距增大,耦合損耗劇增,兩根單模光纖之間的間距,通常限于《20μm。為了增加光纖間距以容許放置各種自由空間光學元件,通常會采用熱擴芯(TEC)光纖或者透鏡光纖,分別如圖8(b)和圖8(c)所示。TEC光纖和透鏡光纖都能擴大光斑尺寸,以適于自由空間光傳輸。兩根TEC光纖之間的間距可達~10mm,而兩根透鏡光纖之間的間距可達~50mm。對于一些需要更長自由空間光路的應用領域(比如下文將要提到的3D MEMS光開關),往往需要準直透鏡,如圖8(d)所示。
圖8. 光纖之間的耦合方式
因此我們知道,將TEC光纖或者透鏡光纖應用于2D MEMS光開關中,有助于增加自由空間光路長度,以容納更多的MEMS微鏡,實現(xiàn)光開關端口的擴展。然而,允許的最大光斑尺寸受限于微鏡的尺寸,而微鏡尺寸取決于MEMS設計和工藝。通常要求微鏡直徑Ф》3ω0(ω0為光斑半徑)以反射99%以上的光功率。因此,2D MEMS光開關的最大端口數(shù)通常限于32×32。
基于3D MEMS 技術的OXC
為了進一步擴展OXC的端口數(shù),人們開發(fā)了3D MEMS光開關。3D MEMS OXC的基本結構如圖9所示,它包括兩個MEMS微鏡陣列和兩個二維光纖準直器陣列,每個輸入光纖準直器與第一個MEMS芯片中的一個微鏡對應,而每個輸出光纖準直器與第二個MEMS芯片中的一個微鏡對應,MEMS芯片上的所有微鏡都能兩軸偏轉,如圖10所示。
圖9. NTT實驗室開發(fā)的3D MEMS OXC的基本結構
圖10. MEMS微鏡陣列和雙軸微鏡的掃描電鏡SEM照片
來自每個輸入端口的光束被第一個MEMS芯片上的一個微鏡獨立控制,通過雙軸偏轉指向第二個MEMS芯片上的另一個微鏡(該微鏡對應輸出的目標端口),第二個微鏡通過雙軸偏轉,調整反射光束的方向,指向輸出端口。因此通過兩個MEMS芯片的控制,可以將光信號從任意輸入端口交換至任意輸出端口。該3D MEMS OXC由NTT實驗室于2003年10月報道,樣機照片如圖11所示。
圖11. NTT實驗室開發(fā)的3D MEMS OXC樣機照片
貝爾實驗室的V. A. Aksyuk等人于2003年4月報道了另一種3D MEMS OXC,比NTT實驗室的報道時間更早,此處先提到NTT實驗室的工作,因其OXC結構相對簡單且易于分析。貝爾實驗室開發(fā)的OXC結構和樣機照片分別如圖12和圖13所示,它包括兩個MEMS微鏡陣列、兩個二維光纖陣列和一個傅里葉透鏡,每條輸入—輸出鏈路通過第一個MEMS芯片上的一個微鏡和第二個MEMS芯片上的另一個微鏡構建。
圖12. 貝爾實驗室開發(fā)的3D MEMS OXC結構
圖13. 貝爾實驗室開發(fā)的3D MEMS OXC樣機照片
NTT實驗室的Yuko Kawajiri等人于2012年報道了另一個3D MEMS OXC,如圖14和圖15所示,其中以一個環(huán)形凹面反射鏡代替傅里葉透鏡。采用環(huán)形凹面鏡可減少邊緣端口的離軸像差,以減小插入損耗。
圖14. NTT實驗室開發(fā)的第二種3D MEMS OXC結構
圖15. NTT實驗室開發(fā)的第二種3D MEMS OXC樣機照片
圖12和圖14中的OXC原理相似,相對于圖9中的OXC結構,自由空間光路中的光束尺寸更大,因此可減小損耗。另外,圖9中的OXC結構,要求MEMS微鏡具有更大的偏轉角度,這會增加MEMS芯片的設計難度。
責任編輯:gt
-
開關
+關注
關注
19文章
3137瀏覽量
93623 -
mems
+關注
關注
129文章
3930瀏覽量
190611
發(fā)布評論請先 登錄
相關推薦
評論