色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一文詳談機(jī)器學(xué)習(xí)

如意 ? 來(lái)源:百家號(hào) ? 作者: 程序員陌然 ? 2020-07-01 09:28 ? 次閱讀

一。什么是機(jī)器學(xué)習(xí)

人工智能標(biāo)準(zhǔn)化白皮書(2018版)

機(jī)器學(xué)習(xí)(Machine Learning)是一門涉及統(tǒng)計(jì)學(xué)、系統(tǒng)辨識(shí)、逼近理論、神經(jīng)網(wǎng)絡(luò)、優(yōu)化理論、計(jì)算機(jī)科學(xué)、腦科學(xué)等諸多領(lǐng)域的交叉學(xué)科,研究計(jì)算機(jī)怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識(shí)或技能,重新組織已有的知識(shí)結(jié)構(gòu)使之不斷改善自身的性能,是人工智能技術(shù)的核心。

基于數(shù)據(jù)的機(jī)器學(xué)習(xí)是現(xiàn)代智能技術(shù)中的重要方法之一,研究從觀測(cè)數(shù)據(jù)(樣本)出發(fā)尋找規(guī)律,利用這些規(guī)律對(duì)未來(lái)數(shù)據(jù)或無(wú)法觀測(cè)的數(shù)據(jù)進(jìn)行預(yù)測(cè)。

Andrew Ng (吳恩達(dá))

Machine Learning is the science of getting computers to act without being explicitly programmed.

機(jī)器學(xué)習(xí)是一門讓計(jì)算機(jī)無(wú)需顯式編程即可運(yùn)行的科學(xué)。

Microsoft(微軟公司

Machine learning is a technique of data science thathelps computers learn from existing data in order toforecast future behaviors, outcomes, and trends.

機(jī)器學(xué)習(xí)是一種數(shù)據(jù)科學(xué)技術(shù),它幫助計(jì)算機(jī)從現(xiàn)有數(shù)據(jù)中學(xué)習(xí),從而預(yù)測(cè)未來(lái)的行為、結(jié)果和趨勢(shì)。

二。機(jī)器學(xué)習(xí)的相關(guān)術(shù)語(yǔ)

樣本(sample)、示例(instance):

所研究對(duì)象的一個(gè)個(gè)體。相當(dāng)于統(tǒng)計(jì)學(xué)中的實(shí)例(example,instance)

特征(feature)、屬性(attribute):

反映事件或?qū)ο笤谀撤矫娴谋憩F(xiàn)或性質(zhì)的事項(xiàng),如大小,顏色

屬性值(attribute value):

屬性上的取值,例如“青綠”“烏黑”

屬性張成的空間稱為 “屬性空間”(attribute space)、“ 樣本空間”(sample space)或“輸入空間”。

特征空間(feature space):

分別以每個(gè)特征作為一個(gè)坐標(biāo)軸,所有特征所在坐標(biāo)軸張成一個(gè)用于描述不同樣本的空間,稱為特征空間

在該空間中,每個(gè)具體樣本就對(duì)應(yīng)空間的一個(gè)點(diǎn),在這個(gè)意義下,也稱樣本為樣本點(diǎn)。

每個(gè)樣本點(diǎn)對(duì)應(yīng)特征空間的一個(gè)向量,稱為 “特征向量”

特征的數(shù)目即為特征空間的維數(shù)。

樣本集 (sample set)、數(shù)據(jù)集(data set):

若干樣本構(gòu)成的集合;該集合的每個(gè)元素就是一個(gè)樣本

測(cè)試樣本”(testing sample):

學(xué)得模型后,使用該模型進(jìn)行預(yù)測(cè)的過(guò)程稱為“ 測(cè)試”(testing), 被預(yù)測(cè)的樣本稱為“測(cè)試樣本”。

標(biāo)記(label):

有前面的樣本數(shù)據(jù)顯然是不夠的,要建立這樣的關(guān)于“預(yù)測(cè)”(prediction) 的模型,我們需獲得訓(xùn)練樣本的“結(jié)果”信息,例如“((色澤=青綠;根蒂=蜷縮;敲聲= =濁響),好瓜)”。這里關(guān)于示例結(jié)果的信息,例如“好瓜”,稱為“標(biāo)記”(label); 擁有了標(biāo)記信息的示例,則稱為“樣例”(example)。

分類(classification):

若我們欲預(yù)測(cè)的是離散值,例如“好瓜”“壞瓜”,此類學(xué)習(xí)任務(wù)稱為“分類”

回歸(regression)

若欲預(yù)測(cè)的是連續(xù)值,例如西瓜成熟度0.95、0.37,類學(xué)習(xí)任務(wù)稱為“回歸”。

對(duì)只涉及兩個(gè)類別的稱為“二分類’(binary classification)’

聚類”(clustering)

即將訓(xùn)練集中的樣本分成若干組,每組稱為一個(gè) “簇”(cluster);

根據(jù)訓(xùn)練數(shù)據(jù)是否擁有標(biāo)記信息,學(xué)習(xí)任務(wù)可大致劃分為兩大類:“ 監(jiān)督學(xué)習(xí)”(supervised learning) 和 “無(wú)監(jiān)督學(xué)習(xí)”(unsupervised learning), 分類和回歸是前者的代表,而聚類則是后者的代表.

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器人
    +關(guān)注

    關(guān)注

    211

    文章

    28389

    瀏覽量

    206942
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    47207

    瀏覽量

    238279
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8408

    瀏覽量

    132572
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)分析技術(shù)的創(chuàng)新源之,
    的頭像 發(fā)表于 11-16 01:07 ?386次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為種專門為深度學(xué)習(xí)機(jī)
    的頭像 發(fā)表于 11-15 09:19 ?434次閱讀

    eda在機(jī)器學(xué)習(xí)中的應(yīng)用

    機(jī)器學(xué)習(xí)項(xiàng)目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這過(guò)程中不可或缺的部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器
    的頭像 發(fā)表于 11-13 10:42 ?293次閱讀

    具身智能與機(jī)器學(xué)習(xí)的關(guān)系

    (如機(jī)器人、虛擬代理等)通過(guò)與物理世界或虛擬環(huán)境的交互來(lái)獲得、發(fā)展和應(yīng)用智能的能力。這種智能不僅包括認(rèn)知和推理能力,還包括感知、運(yùn)動(dòng)控制和環(huán)境適應(yīng)能力。具身智能強(qiáng)調(diào)智能體的身體和環(huán)境在智能發(fā)展中的重要性。 2. 機(jī)器學(xué)習(xí)的定義
    的頭像 發(fā)表于 10-27 10:33 ?359次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2480次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    之前對(duì)《時(shí)間序列與機(jī)器學(xué)習(xí)書進(jìn)行了整體瀏覽,并且非常輕松愉快的完成了第章的學(xué)習(xí),今天開(kāi)始學(xué)習(xí)
    發(fā)表于 08-14 18:00

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡(jiǎn)單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了機(jī)器
    發(fā)表于 08-12 11:21

    機(jī)器學(xué)習(xí)中的數(shù)據(jù)分割方法

    機(jī)器學(xué)習(xí)中,數(shù)據(jù)分割是項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評(píng)估。本文將從多個(gè)方面詳細(xì)探討機(jī)器學(xué)習(xí)中數(shù)據(jù)分
    的頭像 發(fā)表于 07-10 16:10 ?1717次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器
    的頭像 發(fā)表于 07-02 11:25 ?995次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1334次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1640次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用

    請(qǐng)問(wèn)PSoC? Creator IDE可以支持IMAGIMOB機(jī)器學(xué)習(xí)嗎?

    。 我發(fā)現(xiàn)IMAGIMOB 是個(gè)很好的解決方案來(lái)滿足我的需求,但現(xiàn)在的問(wèn)題是, PSoC? Creator 不支持 IMAGIMOB! PSoC? Creator 可以支持機(jī)器學(xué)習(xí)或 IMAGIMOB 嗎?
    發(fā)表于 05-20 08:06

    機(jī)器學(xué)習(xí)怎么進(jìn)入人工智能

    ,人工智能已成為個(gè)熱門領(lǐng)域,涉及到多個(gè)行業(yè)和領(lǐng)域,例如語(yǔ)音識(shí)別、機(jī)器翻譯、圖像識(shí)別等。 在編程中進(jìn)行人工智能的關(guān)鍵是使用機(jī)器學(xué)習(xí)算法,這是
    的頭像 發(fā)表于 04-04 08:41 ?301次閱讀

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之。該方法也稱為
    的頭像 發(fā)表于 03-23 08:26 ?612次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧

    如何使用TensorFlow構(gòu)建機(jī)器學(xué)習(xí)模型

    在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建個(gè)簡(jiǎn)單的機(jī)器學(xué)習(xí)模型。
    的頭像 發(fā)表于 01-08 09:25 ?968次閱讀
    如何使用TensorFlow構(gòu)建<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>模型
    主站蜘蛛池模板: 漂亮的保姆3中文版完整版 | 无人区国产片| 久久视频这有精品63在线国产| YELLOW高清视频免费观看| 亚洲qvod图片区电影| 女人高潮了拔出来了她什么感觉| 国产日韩成人内射视频| 99在线视频免费观看视频| 亚洲中文字幕AV在天堂| 日日摸夜夜添夜夜爽出水| 毛片网站在线观看| 火影忍者高清无码黄漫| 国产精品2020观看久久| JAVASCRIPTJAVA水多多| 找老女人泻火对白自拍| 亚洲精品国产A久久久久久| 涩涩网站在线看| 牛牛在线国产精品| 久久久久久久网| 黄色888| 国产AV一区二区三区传媒| 99热最新网站| 最新无码国产在线视频| 一级毛片全部免| 亚洲精品国产乱码AV在线观看| 骚妇BB双飞插| 人淫阁| 青青草原直播| 女人久久WWW免费人成看片| 久久久96人妻无码精品蜜桃| 果冻传媒 在线播放观看| 国产精品麻豆高潮刺激A片| 动漫美女被羞羞动漫怪物| 99久久国产极品蜜臀AV酒店| 最近2019中文字幕MV免费看| 伊人久久影院| 影音先锋影院中文无码| 一点色成人| 真实国产熟睡乱子伦对白无套 | 亚洲欲色欲色XXXXX在线AV| 亚洲爆乳无码精品AAA片蜜桃|