色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

概述卷積神經(jīng)網(wǎng)絡(luò)的概念

如意 ? 來源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 15:48 ? 次閱讀

1、卷積神經(jīng)網(wǎng)絡(luò)的概念

計算機(jī)視覺和 CNN 發(fā)展十一座里程碑

上世紀(jì)60年代,Hubel等人通過對貓視覺皮層細(xì)胞的研究,提出了感受野這個概念,到80年代,F(xiàn)ukushima在感受野概念的基礎(chǔ)之上提出了神經(jīng)認(rèn)知機(jī)的概念,可以看作是卷積神經(jīng)網(wǎng)絡(luò)的第一個實現(xiàn)網(wǎng)絡(luò),神經(jīng)認(rèn)知機(jī)將一個視覺模式分解成許多子模式(特征),然后進(jìn)入分層遞階式相連的特征平面進(jìn)行處理,它試圖將視覺系統(tǒng)模型化,使其能夠在即使物體有位移或輕微變形的時候,也能完成識別。

卷積神經(jīng)網(wǎng)絡(luò)是多層感知機(jī)(MLP)的變種,由生物學(xué)家休博爾和維瑟爾在早期關(guān)于貓視覺皮層的研究發(fā)展而來,視覺皮層的細(xì)胞存在一個復(fù)雜的構(gòu)造,這些細(xì)胞對視覺輸入空間的子區(qū)域非常敏感,稱之為感受野。

CNN由紐約大學(xué)的Yann Lecun于1998年提出,其本質(zhì)是一個多層感知機(jī),成功的原因在于其所采用的局部連接和權(quán)值共享的方式:

一方面減少了權(quán)值的數(shù)量使得網(wǎng)絡(luò)易于優(yōu)化

另一方面降低了模型的復(fù)雜度,也就是減小了過擬合的風(fēng)險

該優(yōu)點(diǎn)在網(wǎng)絡(luò)的輸入是圖像時表現(xiàn)的更為明顯,使得圖像可以直接作為網(wǎng)絡(luò)的輸入,避免了傳統(tǒng)識別算法中復(fù)雜的特征提取和數(shù)據(jù)重建的過程,在二維圖像的處理過程中有很大的優(yōu)勢,如網(wǎng)絡(luò)能夠自行抽取圖像的特征包括顏色、紋理、形狀及圖像的拓?fù)浣Y(jié)構(gòu),在處理二維圖像的問題上,特別是識別位移、縮放及其他形式扭曲不變性的應(yīng)用上具有良好的魯棒性和運(yùn)算效率等。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4773

    瀏覽量

    100890
  • 互聯(lián)網(wǎng)
    +關(guān)注

    關(guān)注

    54

    文章

    11166

    瀏覽量

    103460
  • 卷積
    +關(guān)注

    關(guān)注

    0

    文章

    95

    瀏覽量

    18527
收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?560次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景及優(yōu)缺點(diǎn)

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNNs)是一種深度學(xué)習(xí)架構(gòu),它在圖像識別、視頻分析、自然語言處理等領(lǐng)域有著廣泛的應(yīng)用。 一、卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 14:45 ?760次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點(diǎn)

    的基本概念、原理、特點(diǎn)以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一種
    的頭像 發(fā)表于 07-11 14:38 ?1127次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1614次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    結(jié)構(gòu)。它們在處理不同類型的數(shù)據(jù)和解決不同問題時具有各自的優(yōu)勢和特點(diǎn)。本文將從多個方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1349次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?3479次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:49 ?564次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:12 ?1248次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,由多層
    的頭像 發(fā)表于 07-03 09:28 ?645次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?437次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理

    和工作原理,在處理圖像數(shù)據(jù)時展現(xiàn)出了卓越的性能。本文將從卷積神經(jīng)網(wǎng)絡(luò)的基本概念、結(jié)構(gòu)組成、工作原理以及實際應(yīng)用等多個方面進(jìn)行深入解讀。
    的頭像 發(fā)表于 07-02 18:17 ?3838次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋
    的頭像 發(fā)表于 07-02 16:47 ?612次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    基本概念、結(jié)構(gòu)、訓(xùn)練過程以及應(yīng)用場景。 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 神經(jīng)網(wǎng)絡(luò) 神經(jīng)網(wǎng)絡(luò)是一種
    的頭像 發(fā)表于 07-02 14:44 ?676次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4344次閱讀
    主站蜘蛛池模板: 国语92电影网午夜福利| 国内2018年午夜福利5678| 亚洲 欧美 日韩 卡通 另类 | 欧美高清videos 360p| 久久精品一区二区三区资源网| 国产一区内射最近更新| 国产精品亚洲精品爽爽| 国产精品久久自在自2021| 国产成A人片在线观看| 高H各种PLAY全肉NP| 高清午夜福利电影在线| 国产69精品久久久久乱码| 广东95后小情侣酒店自拍流出| 成片在线看一区二区草莓| 成人精品视频| 动漫美女性侵| 国产高清在线观看视频| 国产美女裸身网站免费观看视频| 国产精品卡1卡2卡三卡四| 国产精品人妻无码久久久2022| 国产精品在线手机视频| 国产午夜不卡在线观看视频666| 国产一区免费在线观看| 久草热8精品视频在线观看| 巨胸美女狂喷奶水www网麻豆| 美女隐私黄www视频| 嫩草欧美曰韩国产大片| 秋霞午夜理论理论福利无码| 日韩国产精品欧美一区二区| 同时和两老师双飞| 亚洲精品乱码电影在线观看| 亚洲在线中文无码首页| 在线观看永久免费网站| 97免费视频在线| 北原夏美 快播| 国产精品久久久久久影院| 国产这里有精品| 久久人妻少妇嫩草AV無碼| 男女无遮挡吃奶gift动态图| 日本强好片久久久久久AAA| 午夜免费国产体验区免费的|