色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習在計算機視覺上的四大應用

如意 ? 來源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 16:16 ? 次閱讀

深度學習計算機視覺上的應用

計算機視覺中比較成功的深度學習的應用,包括人臉識別,圖像問答,物體檢測,物體跟蹤。

人臉識別:

這里說人臉識別中的人臉比對,即得到一張人臉,與數據庫里的人臉進行比對;或同時給兩張人臉,判斷是不是同一個人。

這方面比較超前的是湯曉鷗教授,他們提出的DeepID算法在LWF上做得比較好。他們也是用卷積神經網絡,但在做比對時,兩張人臉分別提取了不同位置特征,然后再進行互相比對,得到最后的比對結果。最新的DeepID-3算法,在LWF達到了99.53%準確度,與肉眼識別結果相差無幾。

圖片問答問題:

這是2014年左右興起的課題,即給張圖片同時問個問題,然后讓計算機回答。比如有一個辦公室靠海的圖片,然后問“桌子后面有什么”,神經網絡輸出應該是“椅子和窗戶”。

深度學習在計算機視覺上的四大應用

這一應用引入了LSTM網絡,這是一個專門設計出來具有一定記憶能力的神經單元。特點是,會把某一個時刻的輸出當作下一個時刻的輸入??梢哉J為它比較適合語言等,有時間序列關系的場景。因為我們在讀一篇文章和句子的時候,對句子后面的理解是基于前面對詞語的記憶。

圖像問答問題是基于卷積神經網絡和LSTM單元的結合,來實現圖像問答。LSTM輸出就應該是想要的答案,而輸入的就是上一個時刻的輸入,以及圖像的特征,及問句的每個詞語。

物體檢測問題:

① Region CNN

深度學習在物體檢測方面也取得了非常好的成果。2014年的Region CNN算法,基本思想是首先用一個非深度的方法,在圖像中提取可能是物體的圖形塊,然后深度學習算法根據這些圖像塊,判斷屬性和一個具體物體的位置。

深度學習在計算機視覺上的四大應用

為什么要用非深度的方法先提取可能的圖像塊?因為在做物體檢測的時候,如果你用掃描窗的方法進行物體監測,要考慮到掃描窗大小的不一樣,長寬比和位置不一樣,如果每一個圖像塊都要過一遍深度網絡的話,這種時間是你無法接受的。

所以用了一個折中的方法,叫Selective Search。先把完全不可能是物體的圖像塊去除,只剩2000左右的圖像塊放到深度網絡里面判斷。那么取得的成績是AP是58.5,比以往幾乎翻了一倍。有一點不盡如人意的是,region CNN的速度非常慢,需要10到45秒處理一張圖片。

② Faster R-CNN方法

而且我在去年NIPS上,我們看到的有Faster R-CNN方法,一個超級加速版R-CNN方法。它的速度達到了每秒七幀,即一秒鐘可以處理七張圖片。技巧在于,不是用圖像塊來判斷是物體還是背景,而把整張圖像一起扔進深度網絡里,讓深度網絡自行判斷哪里有物體,物體的方塊在哪里,種類是什么?

經過深度網絡運算的次數從原來的2000次降到一次,速度大大提高了。

Faster R-CNN提出了讓深度學習自己生成可能的物體塊,再用同樣深度網絡來判斷物體塊是否是背景?同時進行分類,還要把邊界和給估計出來。

Faster R-CNN可以做到又快又好,在VOC2007上檢測AP達到73.2,速度也提高了兩三百倍。

③ YOLO

去年FACEBOOK提出來的YOLO網絡,也是進行物體檢測,最快達到每秒鐘155幀,達到了完全實時。它讓一整張圖像進入到神經網絡,讓神經網絡自己判斷這物體可能在哪里,可能是什么。但它縮減了可能圖像塊的個數,從原來Faster R-CNN的2000多個縮減縮減到了98個。

同時取消了Faster R-CNN里面的RPN結構,代替Selective Search結構。YOLO里面沒有RPN這一步,而是直接預測物體的種類和位置。

YOLO的代價就是精度下降,在155幀的速度下精度只有52.7,45幀每秒時的精度是63.4。

④ SSD

在arXiv上出現的最新算法叫Single Shot MultiBox Detector,即SSD。

它是YOLO的超級改進版,吸取了YOLO的精度下降的教訓,同時保留速度快的特點。它能達到58幀每秒,精度有72.1。速度超過Faster R-CNN 有8倍,但達到類似的精度。

物體跟蹤

所謂跟蹤,就是在視頻里面第一幀時鎖定感興趣的物體,讓計算機跟著走,不管怎么旋轉晃動,甚至躲在樹叢后面也要跟蹤。

深度學習在計算機視覺上的四大應用

深度學習對跟蹤問題有很顯著的效果。是第一在線用深度學習進行跟蹤的文章,當時超過了其它所有的淺層算法。

今年有越來越多深度學習跟蹤算法提出。去年十二月ICCV 2015上面,馬超提出的Hierarchical Convolutional Feature算法,在數據上達到最新的記錄。它不是在線更新一個深度學習網絡,而是用一個大網絡進行預訓練,然后讓大網絡知道什么是物體什么不是物體。

將大網絡放在跟蹤視頻上面,然后再分析網絡在視頻上產生的不同特征,用比較成熟的淺層跟蹤算法來進行跟蹤,這樣利用了深度學習特征學習比較好的好處,同時又利用了淺層方法速度較快的優點。效果是每秒鐘10幀,同時精度破了記錄。

最新的跟蹤成果是基于Hierarchical Convolutional Feature,由一個韓國的科研組提出的MDnet。它集合了前面兩種深度算法的集大成,首先離線的時候有學習,學習的不是一般的物體檢測,也不是ImageNet,學習的是跟蹤視頻,然后在學習視頻結束后,在真正在使用網絡的時候更新網絡的一部分。這樣既在離線的時候得到了大量的訓練,在線的時候又能夠很靈活改變自己的網絡。

基于嵌入式系統的深度學習

回到ADAS問題(慧眼科技的主業),它完全可以用深度學習算法,但對硬件平臺有比較高的要求。在汽車上不太可能把一臺電腦放上去,因為功率是個問題,很難被市場所接受。

現在的深度學習計算主要是在云端進行,前端拍攝照片,傳給后端的云平臺處理。但對于ADAS而言,無法接受長時間的數據傳輸的,或許發生事故后,云端的數據還沒傳回來。

那是否可以考慮NVIDIA推出的嵌入式平臺?NVIDIA推出的嵌入式平臺,其運算能力遠遠強過了所有主流的嵌入式平臺,運算能力接近主流的頂級CPU,如臺式機的i7。那么慧眼科技在做工作就是要使得深度學習算法,在嵌入式平臺有限的資源情況下能夠達到實時效果,而且精度幾乎沒有減少。

具體做法是,首先對網絡進行縮減,可能是對網絡的結構縮減,由于識別場景不同,也要進行相應的功能性縮減;另外要用最快的深度檢測算法,結合最快的深度跟蹤算法,同時自己研發出一些場景分析算法。三者結合在一起,目的是減少運算量,減少檢測空間的大小。在這種情況下,在有限資源上實現了使用深度學習算法,但精度減少的非常少。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 計算機
    +關注

    關注

    19

    文章

    7617

    瀏覽量

    89946
  • 人臉識別
    +關注

    關注

    76

    文章

    4061

    瀏覽量

    83487
  • 深度學習
    +關注

    關注

    73

    文章

    5550

    瀏覽量

    122378
收藏 0人收藏

    評論

    相關推薦
    熱點推薦

    【小白入門必看】一文讀懂深度學習計算機視覺技術及學習路線

    一、什么是計算機視覺?計算機視覺,其實就是教機器怎么像我們人一樣,用攝像頭看看周圍的世界,然后理解它。比如說,它能認出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉換
    的頭像 發表于 10-31 17:00 ?989次閱讀
    【小白入門必看】一文讀懂<b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術及<b class='flag-5'>學習</b>路線

    計算機視覺有哪些優缺點

    計算機視覺作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術的發展不僅推動了多個行業的變革,也帶來了諸多優勢,但同時也伴隨著一些挑戰和局限性。以下是對
    的頭像 發表于 08-14 09:49 ?1668次閱讀

    機器視覺計算機視覺有什么區別

    機器視覺計算機視覺是兩個密切相關但又有所區別的概念。 一、定義 機器視覺 機器視覺,又稱為計算機
    的頭像 發表于 07-16 10:23 ?897次閱讀

    計算機視覺的五大技術

    計算機視覺作為深度學習領域最熱門的研究方向之一,其技術涵蓋了多個方面,為人工智能的發展開拓了廣闊的道路。以下是對計算機
    的頭像 發表于 07-10 18:26 ?2103次閱讀

    計算機視覺與機器視覺的區別與聯系

    隨著人工智能技術的飛速發展,計算機視覺和機器視覺作為該領域的兩個重要分支,逐漸引起了廣泛關注。盡管兩者名稱上有所相似,但實際它們
    的頭像 發表于 07-10 18:24 ?2280次閱讀

    計算機視覺的工作原理和應用

    計算機視覺(Computer Vision,簡稱CV)是一門跨學科的研究領域,它利用計算機和數學算法來模擬人類視覺系統對圖像和視頻進行識別、理解、分析和處理。其核心目標在于使
    的頭像 發表于 07-10 18:24 ?2907次閱讀

    計算機視覺與人工智能的關系是什么

    引言 計算機視覺是一門研究如何使計算機能夠理解和解釋視覺信息的學科。它涉及到圖像處理、模式識別、機器學習等多個領域的知識。人工智能則是研究如
    的頭像 發表于 07-09 09:25 ?1093次閱讀

    計算機視覺與智能感知是干嘛的

    引言 計算機視覺(Computer Vision)是一門研究如何使計算機能夠理解和解釋視覺信息的學科。它涉及到圖像處理、模式識別、機器學習
    的頭像 發表于 07-09 09:23 ?1529次閱讀

    計算機視覺和機器視覺區別在哪

    計算機視覺和機器視覺是兩個密切相關但又有明顯區別的領域。 一、定義 計算機視覺 計算機
    的頭像 發表于 07-09 09:22 ?731次閱讀

    計算機視覺和圖像處理的區別和聯系

    計算機視覺和圖像處理是兩個密切相關但又有明顯區別的領域。 1. 基本概念 1.1 計算機視覺 計算機視覺
    的頭像 發表于 07-09 09:16 ?2013次閱讀

    計算機視覺人工智能領域有哪些主要應用?

    與分類是計算機視覺的基礎應用之一。通過訓練機器學習模型,計算機可以識別和分類各種圖像,如動物、植物、物體等。這種技術許多領域都有應用,如搜
    的頭像 發表于 07-09 09:14 ?2362次閱讀

    計算機視覺屬于人工智能嗎

    屬于,計算機視覺是人工智能領域的一個重要分支。 引言 計算機視覺是一門研究如何使計算機具有視覺
    的頭像 發表于 07-09 09:11 ?1866次閱讀

    深度學習計算機視覺領域的應用

    隨著人工智能技術的飛速發展,深度學習作為其中的核心技術之一,已經計算機視覺領域取得了顯著的成果。計算機
    的頭像 發表于 07-01 11:38 ?1442次閱讀

    機器視覺計算機視覺的區別

    人工智能和自動化技術的快速發展中,機器視覺(Machine Vision, MV)和計算機視覺(Computer Vision, CV)作為兩個重要的分支領域,都扮演著至關重要的角色
    的頭像 發表于 06-06 17:24 ?2035次閱讀

    計算機視覺的主要研究方向

    計算機視覺(Computer Vision, CV)作為人工智能領域的一個重要分支,致力于使計算機能夠像人眼一樣理解和解釋圖像和視頻中的信息。隨著深度
    的頭像 發表于 06-06 17:17 ?1556次閱讀
    主站蜘蛛池模板: 亚洲免费无码av线观看 | 国产精品视频yy9099 | 中文字幕乱码一区AV久久 | 国产成人精品久久久久婷婷 | 男人都懂www深夜免费网站 | 叮当成人社区 | 日本高清无卡码一区二区久久 | 婷婷久久综合九色综合伊人色 | 色中色辩论区 | a一级毛片视频免费看 | 亚洲精品免费在线视频 | 高清无码中文字幕在线观看视频 | 国产AV国产精品国产三级在线L | 日本综艺大尺度无删减版在线 | 久久国产影院 | 亚洲 欧美 日韩 国产 视频 | 国产午夜精品久久久久婷婷 | 全彩黄漫火影忍者纲手无遮挡 | 无码国产欧美日韩精品 | 亚洲妈妈精品一区二区三区 | 小黄飞二人转 | 亚洲AV无码影院在线播放 | 亚洲 日韩 国产 制服 在线 | 欧美性xxxx18 | 野花日本完整版在线观看免费高清 | 老师的快感电影完整版 | 亚洲视频中文 | a一级一片免费观看视频 | 四房色播手机版 | 久久九九久精品国产尤物 | 无码乱人伦一区二区亚洲 | 吃寂寞寡妇的奶 | 久久中文字幕无线观看 | 99 久久99久久精品免观看 | 日本A级作爱片金瓶双艳 | 99久久精品费精品蜜臀AV | 国产精品亚洲污污网站入口 | 中文日韩亚洲欧美字幕 | 亚洲第一成年人网站 | 东北足疗店妓女在线观看 | 伦理79电影网在线观看 |

    電子發燒友

    中國電子工程師最喜歡的網站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術信息
    • 參加活動獲取豐厚的禮品