1 xilinx FFT IP介紹
Xilinx快速傅立葉變換(FFT IP)內(nèi)核實(shí)現(xiàn)了Cooley-Tukey FFT算法,這是一種計(jì)算有效的方法,用于計(jì)算離散傅立葉變換(DFT)。
1)正向和反向復(fù)數(shù)FFT,運(yùn)行時(shí)間可配置。
2)變換大小N = 2m,m = 3 – 16
3)數(shù)據(jù)采樣精度bx = 8 – 34
4)相位系數(shù)精度bw = 8 – 34
5)算術(shù)類(lèi)型:
- °無(wú)標(biāo)度(全精度)定點(diǎn)
- °定標(biāo)定點(diǎn)
- °浮點(diǎn)數(shù)
6)定點(diǎn)或浮點(diǎn)接口
7)蝴蝶后舍入或截?cái)?/p>
8)Block RAM或分布式RAM,用于數(shù)據(jù)和相位因子存儲(chǔ)
9)可選的運(yùn)行時(shí)可配置轉(zhuǎn)換點(diǎn)大小
10)可擴(kuò)展的定點(diǎn)核心的運(yùn)行時(shí)可配置擴(kuò)展時(shí)間表
11)位/數(shù)字反轉(zhuǎn)或自然輸出順序
12)用于數(shù)字通信系統(tǒng)的可選循環(huán)前綴插入
13)四種架構(gòu)在內(nèi)核大小和轉(zhuǎn)換時(shí)間之間進(jìn)行權(quán)衡
14)位精確的C模型和用于系統(tǒng)建模的MEX功能可供下載
15)有四種運(yùn)算架構(gòu)可供選擇
2 FFT IP接口介紹
圖1 xilinx FFT IP
1)AXI4-Stream 介紹
AXI4-Stream接口帶來(lái)了標(biāo)準(zhǔn)化,并增強(qiáng)了Xilinx IP LogiCORE解決方案的互操作性。除了諸如aclk,acclken和aresetn之類(lèi)的常規(guī)控制信號(hào)以及事件信號(hào)之外,到內(nèi)核的所有輸入和輸出都通過(guò)AXI4-Stream通道進(jìn)行傳輸。通道始終由TVALID和TDATA以及必填字段和可選字段(如TREADY,TUSER和TLAST)組成。TVALID和TREADY一起執(zhí)行握手以傳輸消息,其中有效負(fù)載為T(mén)DATA,TUSER和TLAST。內(nèi)核對(duì)包含在TDATA字段中的操作數(shù)進(jìn)行運(yùn)算,并將結(jié)果輸出到輸出通道的TDATA字段中。
圖2 AXI4-Stream時(shí)序圖
圖2顯示了在AXI4-Stream通道中的數(shù)據(jù)傳輸。TVALID由通道的源(主)端驅(qū)動(dòng),而TREADY由接收器(從屬)驅(qū)動(dòng)。TVALID指示有效負(fù)載字段(TDATA,TUSER和TLAST)中的值有效。TREADY表示從機(jī)已準(zhǔn)備好接收數(shù)據(jù)。當(dāng)一個(gè)周期中的TVALID和TREADY均為T(mén)RUE時(shí),將發(fā)生傳輸。主機(jī)和從機(jī)分別為下一次傳輸分別設(shè)置TVALID和TREADY。
2)s_axis_config_tdata接口介紹
s_axis_config_tdata接口攜帶配置信息CP_LEN,F(xiàn)WD / INV,NFFT和SCALE_SCH。
NFFT(變換的點(diǎn)大小):NFFT可以是最大變換的大小或任何較小的點(diǎn)大小。例如,1024點(diǎn)FFT可以計(jì)算點(diǎn)大小1024、512、256等。NFFT的值為log2(點(diǎn)大小)。該字段僅在運(yùn)行時(shí)可配置的轉(zhuǎn)換點(diǎn)大小時(shí)出現(xiàn)。
CP_LEN(循環(huán)前綴長(zhǎng)度):從轉(zhuǎn)換結(jié)束起,在輸出整個(gè)轉(zhuǎn)換之前,最初作為循環(huán)前綴輸出的樣本數(shù)。CP_LEN可以是小于點(diǎn)大小的從零到一的任何數(shù)字。該字段僅在循環(huán)前綴插入時(shí)出現(xiàn)。
FWD_INV:指示是執(zhí)行前向FFT變換還是逆向FFT變換(IFFT)。當(dāng)FWD_INV = 1時(shí),將計(jì)算前向變換。如果FWD_INV = 0,則計(jì)算逆變換。
SCALE_SCH伸縮時(shí)間表:對(duì)于突發(fā)I / O架構(gòu),伸縮時(shí)間表由每個(gè)階段的兩位指定,第一階段的伸縮由兩個(gè)LSB給出??s放比例可以指定為3、2、1或0,代表要移位的位數(shù)。N = 1024,Radix-4 Burst I / O的示例縮放計(jì)劃是[1 0 2 3 2](從最后階段到第一階段排序)。對(duì)于N = 128,Radix-2 Burst I / O或Radix-2 Lite Burst I / O,一個(gè)可能的擴(kuò)展時(shí)間表是[1 1 1 1 0 1 2](從最后階段到第一階段排序)。對(duì)于流水線(xiàn)I / O架構(gòu),從兩個(gè)LSB開(kāi)始,每?jī)蓪?duì)Radix-2級(jí)用兩位指定擴(kuò)展時(shí)間表。例如,N = 256的縮放時(shí)間表可以是[2 2 2 3]。當(dāng)N不是4的冪時(shí),最后一級(jí)的最大位增長(zhǎng)為一位。例如,對(duì)于N = 512,[0 2 2 2 2]或[1 2 2 2 2]是有效的縮放時(shí)間表,但是[2 2 2 2 2]無(wú)效。對(duì)于此變換長(zhǎng)度,SCALE_SCH的兩個(gè)MSB只能為00或01。此字段僅可用于縮放算法(非縮放,塊浮點(diǎn)或單精度浮點(diǎn))。
s_axis_config_tdata接口格式:
1.(可選)NFFT加填充
2.(可選)CP_LEN加填充
3.前轉(zhuǎn)/后轉(zhuǎn)
4.(可選)SCALE_SCH
舉例:
內(nèi)核具有可配置的轉(zhuǎn)換大小,最大大小為128點(diǎn),具有循環(huán)前綴插入和3個(gè)FFT通道。內(nèi)核需要配置為執(zhí)行8點(diǎn)變換,并在通道0和1上執(zhí)行逆變換,并在通道2上執(zhí)行前向變換。需要4點(diǎn)循環(huán)前綴。這些字段采用表中的值。
這給出了19位的向量長(zhǎng)度。由于所有AXI通道必須與字節(jié)邊界對(duì)齊,因此需要5個(gè)填充位,從而s_axis_config_tdata的長(zhǎng)度為24位。
3)相關(guān)標(biāo)志信號(hào)
3 xilinx FFT IP的仿真測(cè)試
FFT的長(zhǎng)度選擇8點(diǎn),x輸入序列為x=[1,2,3,4,5,6,7,8];
Matlab驗(yàn)證:
clear all close all clc x = [1,2,3,4,5,6,7,8]; y =fft(x,8); realy=real(y); imagy=imag(y);
Y的實(shí)部輸出為realy=[36,-4,-4,-4,-4,-4,-4,-4];
Y的虛部輸出為imagy=[0,9.6569,4,1.6569,0,-1.6569,-4,-9.6569];
FPGA仿真驗(yàn)證:
1)IP的設(shè)置
2)仿真頂層
`timescale 1ns / 1ps module tb_fft_top( ); reg aclk; reg [7 : 0] s_axis_config_tdata; reg s_axis_config_tvalid; wire s_axis_config_tready; wire [31 : 0] s_axis_data_tdata; reg s_axis_data_tvalid; wire s_axis_data_tready; reg s_axis_data_tlast; wire [31 : 0] m_axis_data_tdata; wire m_axis_data_tvalid; reg m_axis_data_tready; wire m_axis_data_tlast; reg [15:0] real_data; reg [15:0] imag_data; wire [15:0] real_dataout; wire [15:0] imag_dataout; reg [9:0] cnt; assign s_axis_data_tdata={real_data,imag_data}; assign real_dataout = m_axis_data_tdata[31:16]; assign imag_dataout = m_axis_data_tdata[15:0]; initial begin aclk = 0; s_axis_config_tdata=8'b0; s_axis_config_tvalid=1'b0; s_axis_data_tvalid=1'b0; s_axis_data_tlast=1'b0; real_data=16'd0; imag_data=16'd0; cnt = 0; m_axis_data_tready=1'b1; #1000; s_axis_config_tdata=8'b0000_0001; s_axis_config_tvalid=1'b1; #10; s_axis_config_tdata=8'b0000_0000; s_axis_config_tvalid=1'b0; #1000; repeat(8)begin s_axis_data_tvalid=1'b1; real_data=real_data+16'd1; cnt=cnt+1; if(cnt==8) s_axis_data_tlast=1'b1; #10; end s_axis_data_tvalid=1'b0; s_axis_data_tlast=1'b0; real_data=16'd0; #1000; $stop; end always #(5) aclk= ~aclk; fft_top Ufft_top( .aclk(aclk), // input wire aclk .s_axis_config_tdata(s_axis_config_tdata), // input wire [7 : 0] s_axis_config_tdata .s_axis_config_tvalid(s_axis_config_tvalid), // input wire s_axis_config_tvalid .s_axis_config_tready(s_axis_config_tready), // output wire s_axis_config_tready .s_axis_data_tdata(s_axis_data_tdata), // input wire [31 : 0] s_axis_data_tdata .s_axis_data_tvalid(s_axis_data_tvalid), // input wire s_axis_data_tvalid .s_axis_data_tready(s_axis_data_tready), // output wire s_axis_data_tready .s_axis_data_tlast(s_axis_data_tlast), // input wire s_axis_data_tlast .m_axis_data_tdata(m_axis_data_tdata), // output wire [31 : 0] m_axis_data_tdata .m_axis_data_tvalid(m_axis_data_tvalid), // output wire m_axis_data_tvalid .m_axis_data_tready(m_axis_data_tready), // input wire m_axis_data_tready .m_axis_data_tlast(m_axis_data_tlast) // output wire m_axis_data_tlast ); endmodule
3)仿真結(jié)果
Vivado最終的仿真結(jié)果為
Real=[36,-4,-4,-4,-4,-4,-4,-4];
Imag=[0,-10,-4,-2,0,1,4,9];
與matlab的計(jì)算結(jié)果相比實(shí)部一樣,除虛部因?yàn)閿?shù)據(jù)位的取舍問(wèn)題以外,正數(shù)和負(fù)數(shù)部分順序相反。
編輯:hfy
-
Xilinx
+關(guān)注
關(guān)注
71文章
2168瀏覽量
121672 -
仿真
+關(guān)注
關(guān)注
50文章
4099瀏覽量
133718 -
快速傅立葉變換
+關(guān)注
關(guān)注
0文章
3瀏覽量
1463
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論