色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

SiCMOSFET如何實現(xiàn)降低功率轉(zhuǎn)換過程中能量損耗

電子設(shè)計 ? 來源:ROHM ? 作者:ROHM ? 2021-01-27 15:22 ? 次閱讀

人們普遍認為,SiCMOSFET可以實現(xiàn)非常快的開關(guān)速度,有助于顯著降低電力電子領(lǐng)域功率轉(zhuǎn)換過程中的能量損耗。然而,由于傳統(tǒng)功率半導體封裝的限制,在實際應(yīng)用中并不總是能發(fā)揮SiC元器件的全部潛力。在本文中,我們首先討論傳統(tǒng)封裝的一些局限性,然后介紹采用更好的封裝形式所帶來的好處。最后,展示對使用了圖騰柱(Totem-Pole)拓撲的3.7kW單相PFC進行封裝改進后獲得的改善效果。

功率元器件傳統(tǒng)封裝形式帶來的開關(guān)性能限制

TO-247N(圖1)是應(yīng)用最廣泛的功率晶體管傳統(tǒng)封裝形式之一。如圖1左側(cè)所示,該器件的每個引腳都存在寄生電感分量。圖1右側(cè)是非常簡單且典型的柵極驅(qū)動電路示例。從這些圖中可以看出,漏極引腳和源極引腳的電感分量會被加到主電流開關(guān)電路中,這些電感會導致器件在關(guān)斷時產(chǎn)生過電壓,因此要想確保過電壓的數(shù)值滿足漏極-源極間技術(shù)規(guī)格的要求,就需要限制器件的開關(guān)速度。

pIYBAGAREj-AdmV6AACB1IaSl9M543.png

圖1:功率元器件的傳統(tǒng)封裝及其寄生電感

柵極引腳和源極引腳的寄生電感是柵極驅(qū)動電路中的一部分,因此在驅(qū)動MOSFET時需要考慮這部分電感。此外,這部分電感還可能會與柵極驅(qū)動電路中的寄生電容之間發(fā)生振蕩。當MOSFET導通時,ID增加,并且在源極引腳的電感(Ls)中產(chǎn)生電動勢(VLS)。而柵極引腳中則流入電流(IG),并且因柵極電阻(RG)而發(fā)生電壓降。由于這些電壓包含在柵極驅(qū)動電路中,因此它們會使MOSFET導通所需的柵極電壓降低,從而導致導通速度變慢,見圖2。

pIYBAGAREk6AKDaWAAAy7SaoivU768.png

圖2:LS導致芯片中的VGS降低(導通時)

解決這種問題的方法之一是采用具備“驅(qū)動器源極”引腳的功率元器件封裝。通過配備將源極引腳和柵極驅(qū)動環(huán)路分開的驅(qū)動器源極引腳,可以消除導通時的源極電感(LS)對柵極電壓的影響,因此不會因電壓降而降低導通速度,從而可以大大減少導通損耗。

TO-263-7L帶來的開關(guān)性能改善

除了TO-247-4L封裝外,羅姆還開發(fā)出采用TO-263-7L表貼封裝,使分立SiC MOSFET產(chǎn)品陣容更加豐富。采用TO-263-7L封裝可以實現(xiàn)SiC MOSFET源極引腳的開爾文連接,這種封裝的優(yōu)點如圖3所示。從圖中可以看出,柵極驅(qū)動相關(guān)的部分和主電流路徑不再共享主源極側(cè)的電感LS。因此,可以使器件的導通速度更快,損耗更小。

o4YBAGAREmCAZLZGAACT24BDYmE167.png

圖3:TO-263-7L表貼封裝及其寄生電感

采用TO-263-7L封裝的另一個優(yōu)點是漏極引腳和源極引腳的電感比TO-247N封裝小得多。由于漏極引腳的接合面積大,另外源極引腳可以由多根短引線并聯(lián)連接組成,因此可以降低封裝的電感(LD或LS)。為了量化新封裝形式帶來的元器件性能改進程度,我們比較了采用兩種不同封裝的相同SiC MOSFET芯片的導通和關(guān)斷時的開關(guān)動作(圖4)。

o4YBAGAREnaAU_tPAAHZerej3bw991.png

圖4:1200V/40mΩ SiC MOSFET的開關(guān)動作比較

(TO-247N:SCT3040KL、TO-263-7L:SCT3040KW7、VDS=800V)

導通時的開關(guān)瞬態(tài)曲線表明,采用三引腳封裝(TO-247N)的“SCT3040KL”的開關(guān)速度受到限制,其中一個原因是源極引腳的電動勢使有效柵極電壓降低,導致電流變化時間變長,從而造成導通損耗增加。而對于采用具備驅(qū)動器源極的表貼封裝(TO-263-7L)的“SCT3040KW7”來說,電流變化時間則變得非常短,因此可以減少導通損耗。另外,由于寄生電感減少,因此采用TO-263-7L封裝的SiC MOSFET在關(guān)斷時的dI/dt要高得多,因此關(guān)斷損耗也小于TO-247N封裝。

下圖展示了兩種封裝實現(xiàn)的開關(guān)損耗與開關(guān)電流之間的關(guān)系。顯然,TO-263-7L封裝器件導通速度的提高有助于降低開關(guān)損耗,尤其是在大電流區(qū)域效果更加明顯。

o4YBAGAREoWALVRDAADoNF5wFDM532.png

圖5:采用TO-247N封裝和TO-263-7L封裝的1200V/40mΩ SiC MOSFET的開關(guān)損耗比較

【柵極驅(qū)動電路:使用了米勒鉗位(MC)和浪涌鉗位用的肖特基勢壘二極管(SBD)】

如上述比較數(shù)據(jù)所示,具有可以連接至柵極驅(qū)動環(huán)路的驅(qū)動器源極引腳,并可以減小寄生電感的封裝,器件性能得以發(fā)揮,特別是在大電流區(qū)域中發(fā)揮得更好。所以,在相同的開關(guān)頻率下器件總損耗更小;另外,如果降低損耗不是主要目標,則還可以增加器件的開關(guān)頻率。

新表貼封裝產(chǎn)品的陣容

除了上文提到的1200V/40mΩ產(chǎn)品之外,羅姆產(chǎn)品陣容中還包括額定電壓分別為650V和1200V 的TO-263-7L 封裝SiC MOSFET產(chǎn)品(表1)。另外,符合汽車電子產(chǎn)品可靠性標準的車載級產(chǎn)品也在計劃中。

pIYBAGAREp6AJvD_AAAmbfLzuiM676.png

表1:TO-263-7L封裝的溝槽SiC MOSFET產(chǎn)品陣容

表貼封裝SiC MOSFET在車載充電器(OBC)中的適用性

本文將以一個3.7kW單相PFC的電路為應(yīng)用案例來說明表貼封裝SiC MOSFET能夠?qū)崿F(xiàn)的性能。這種功率級單相PFC可用作單相3.7kW車載充電器的輸入級,或用作11kW車載充電系統(tǒng)的構(gòu)件。在后一種情況下,將三個單相PFC通過開關(guān)矩陣相組合,可以實現(xiàn)單相驅(qū)動或最大11kW的三相驅(qū)動。該應(yīng)用案例框圖參見圖6。

o4YBAGARErOAAxtQAABwLHRqk3g593.png

圖6:多個3.7kW PFC組成的11kW OBC框圖

圖7中包括幾種可應(yīng)用的PFC電路拓撲結(jié)構(gòu)。傳統(tǒng)升壓PFC的輸入端存在二極管整流電路,因此其效率提升受到限制。兩相無橋PFC以及圖騰柱PFC可以削減二極管整流電路,從而可以降低總傳導損耗。但是需要注意的是,兩相無橋PFC雖然可實現(xiàn)高效率,卻存在每個橋臂僅在一半輸入周期內(nèi)使用的缺點,因此每個器件的峰值電流與電流有效值之比(即所謂的“波峰因數(shù)”)增高,使功率半導體上的功率循環(huán)壓力很大。

o4YBAGAREsaAYGDaAABsZ7WzGW8946.png

圖7:單相PFC的概念圖

圖騰柱PFC有兩種不同的類型。最簡單的類型僅包含兩個MOSFET和兩個二極管。由于二極管在低頻下開關(guān),因此選擇具有低正向壓降的器件。另一方面,由于MOSFET中的體二極管用于換流,因此選擇體二極管特性出色的器件是非常重要的。此外,新型寬帶隙半導體(比如SiC MOSFET)具有支持硬開關(guān)的體二極管,因此非常適用于這類應(yīng)用。最后,如果希望盡可能獲得更出色的性能,那么可以用有源開關(guān)(比如SJ MOSFET)來替代低頻開關(guān)二極管,以進一步降低損耗。

為了展示利用圖騰柱PFC可以實現(xiàn)的幾種性能,我們實施了仿真。在仿真中,我們對采用TO-263-7L 封裝的650V/60mΩ SiC MOSFET的開關(guān)損耗測量值進行了驗證。假設(shè)開關(guān)頻率為100 kHz,我們對高頻側(cè)橋臂和低頻側(cè)橋臂的半導體損耗都進行了建模。對于低頻橋臂,由于開關(guān)損耗的影響極小,因此僅考慮了60mΩ產(chǎn)品的導通損耗。

仿真結(jié)果如圖8所示。從圖中可以看出,最大效率為98.7%,出現(xiàn)在60%的標稱輸出功率附近。該階段的其他損耗沒有建模。當然,為了進行全面分析,不僅需要考慮控制電路和柵極驅(qū)動電路,還需要考慮電感和其他無源元件的損耗。然而,很明顯,在使用了650V SiC MOSFET的圖騰柱PFC中,可以實現(xiàn)高性能的PFC電路。

pIYBAGAREtWAHH3eAABt_HrUx8w295.png

圖8:僅考慮半導體損耗的圖騰柱PFC的估算效率

(Vin = 230V,Vout = 400V,fSW = 100 kHz,高頻側(cè)橋臂:SCT3060AW7,低頻側(cè)橋臂:60m?產(chǎn)品)

結(jié)語

在本文中,我們確認了SiC MOSFET采用具備驅(qū)動器源極引腳的低電感表貼封裝所帶來的性能優(yōu)勢。研究結(jié)果表明,尤其是在大電流條件下,由于柵極環(huán)路不受dI/dt以及源極引腳電感導致的電壓降的影響,因此采用表貼封裝的產(chǎn)品導通損耗大大降低。封裝電感的總體減小還使得SiC MOSFET的關(guān)斷速度加快。這兩個優(yōu)點顯著降低了器件導通和關(guān)斷時的開關(guān)損耗。在系統(tǒng)方面,我們已經(jīng)看到,圖騰柱PFC中采用RDS(ON)為60mΩ的650V SiC MOSFET時的轉(zhuǎn)換效率超過98%,這將有利于實現(xiàn)非常緊湊的設(shè)計,因此可以說,這對于車載充電器等車載應(yīng)用開發(fā)來說是非常重要的關(guān)鍵點。
編輯:hfy

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    29

    文章

    2807

    瀏覽量

    62608
  • 功率半導體
    +關(guān)注

    關(guān)注

    22

    文章

    1150

    瀏覽量

    42953
  • 功率晶體管
    +關(guān)注

    關(guān)注

    3

    文章

    647

    瀏覽量

    17561
  • 柵極驅(qū)動電路
    +關(guān)注

    關(guān)注

    0

    文章

    16

    瀏覽量

    7307
  • 功率元器件
    +關(guān)注

    關(guān)注

    1

    文章

    42

    瀏覽量

    14681
收藏 人收藏

    評論

    相關(guān)推薦

    在A/D轉(zhuǎn)換過程中,高速ADC與低速ADC在提高性能指標上,考慮的點有什么不同?

    在A/D轉(zhuǎn)換過程中,高速ADC與低速ADC在提高性能指標上,考慮的點有什么不同?
    發(fā)表于 12-18 07:07

    電感功率損耗對電路的影響 電感的種類及其作用分析

    導致電路功率損失增加,從而降低電路的整體工作效率。這在高功率電路尤為明顯,損耗
    的頭像 發(fā)表于 12-03 16:52 ?507次閱讀

    功率電感和普通電感有什么區(qū)別

    功率電感是專門為應(yīng)對高功率應(yīng)用而設(shè)計的一種電感產(chǎn)品。它的主要功能是限制電流變化、平滑電流波形以及在電源轉(zhuǎn)換過程中實現(xiàn)能量的存儲和釋放。由于這
    的頭像 發(fā)表于 10-17 14:28 ?786次閱讀

    DC-DC功率電感基本概念和挑選準則

    DC-DC功率電感是一種特殊類型的電感器,主要用于處理高功率或高電流應(yīng)用場合,特別是在電力電子、開關(guān)電源和DC-DC轉(zhuǎn)換器等領(lǐng)域中發(fā)揮著重要的角色。它是用于儲存能源的元件,主要功能包括限制電流變化、平滑電流波形以及在電源
    的頭像 發(fā)表于 10-09 17:40 ?686次閱讀

    使用PCM1804時,發(fā)現(xiàn)ADC在轉(zhuǎn)換過程中產(chǎn)生3次諧波較大,為什么?

    我們在使用TI的PCM1804時,發(fā)現(xiàn)ADC在轉(zhuǎn)換過程中產(chǎn)生3次諧波較大,影響失真度,具體如圖,問一下,有沒有好建議,以及設(shè)計的時候有什么特別需要注意的事項嗎
    發(fā)表于 10-09 09:08

    開關(guān)電源的損耗跟輸出有關(guān)系嗎,開關(guān)電源的損耗主要包括哪些內(nèi)容

    開關(guān)電源在工作過程中會產(chǎn)生一定的損耗,這些損耗主要表現(xiàn)為兩種形式:一種是在輸出端產(chǎn)生的功率損耗,另一種是在電源內(nèi)部產(chǎn)生的
    的頭像 發(fā)表于 10-01 16:39 ?484次閱讀

    使用自動扭矩降低步進電機系統(tǒng)的功率損耗

    電子發(fā)燒友網(wǎng)站提供《使用自動扭矩降低步進電機系統(tǒng)的功率損耗.pdf》資料免費下載
    發(fā)表于 09-09 09:45 ?0次下載
    使用自動扭矩<b class='flag-5'>降低</b>步進電機系統(tǒng)的<b class='flag-5'>功率</b><b class='flag-5'>損耗</b>

    ESP32 C3降低WIFI連接過程中的持續(xù)電流如何降低

    如圖 WIFI配網(wǎng)過程中 平均電流過大80mA , 有什么辦法可以降低這個電流嗎?
    發(fā)表于 06-06 07:00

    降低電機損耗的措施有哪些?

    電動機在將電能轉(zhuǎn)換為機械能的同時,本身也損耗一部分能量,電動機損耗一般可分為可變損耗、固定損耗
    發(fā)表于 04-28 11:41 ?765次閱讀

    同步整流降壓轉(zhuǎn)換損耗有哪些

    同步整流降壓轉(zhuǎn)換器是一種高效率的DC-DC轉(zhuǎn)換器,它利用低導通電阻的功率MOSFET代替?zhèn)鹘y(tǒng)的二極管作為整流元件,以減少整流過程中能量
    的頭像 發(fā)表于 02-26 15:26 ?823次閱讀
    同步整流降壓<b class='flag-5'>轉(zhuǎn)換</b>器<b class='flag-5'>損耗</b>有哪些

    SDI轉(zhuǎn)AV轉(zhuǎn)換器技術(shù)解析:轉(zhuǎn)換過程中的關(guān)鍵要素與優(yōu)勢

    優(yōu)勢,使得高清視頻的應(yīng)用更加廣泛和便捷。 關(guān)鍵要素: 數(shù)字信號處理 :SDI轉(zhuǎn)AV轉(zhuǎn)換器在轉(zhuǎn)換過程中首先需要對SDI信號進行數(shù)字信號處理。這包括解碼、降噪、色彩空間轉(zhuǎn)換等步驟,以確保轉(zhuǎn)換
    的頭像 發(fā)表于 02-22 15:03 ?654次閱讀

    電力補償電容器運行過程中缺相怎么辦?

    電力補償電容器是現(xiàn)代電力系統(tǒng)不可或缺的重要設(shè)備之一。它能夠有效改善電力系統(tǒng)的功率因數(shù),提高電能利用率,降低電力系統(tǒng)的損耗。然而,在電力補償電容器的運行
    的頭像 發(fā)表于 02-20 14:28 ?977次閱讀
    電力補償電容器運行<b class='flag-5'>過程中</b>缺相怎么辦?

    如何選擇合適的負載功率來確保電源適配器的正常工作?

    和高效工作。 首先,負載功率會影響電源適配器的功率損耗功率損耗指的是電能在傳輸和轉(zhuǎn)換過程中
    的頭像 發(fā)表于 01-30 16:51 ?1101次閱讀

    使用LTC4353過程中發(fā)現(xiàn)電源切換過程中有周期性跌落現(xiàn)象,和什么因素有關(guān)?

    周期性跌落現(xiàn)象。 跌落周期5.634ms。 而且,從3.6V到4V的切換過程中,會出現(xiàn)20us左右的跌落,這和規(guī)格書中ton的時間(0.4us)相差的比較多?
    發(fā)表于 01-04 07:10

    應(yīng)用衛(wèi)星通信領(lǐng)域的一個坐標轉(zhuǎn)換過程—機體坐標系與ENU坐標系的轉(zhuǎn)換

    今天我們要講的是應(yīng)用于衛(wèi)星通信領(lǐng)域的一個坐標轉(zhuǎn)換過程——機體坐標系與ENU坐標系的轉(zhuǎn)換
    的頭像 發(fā)表于 12-27 09:30 ?4379次閱讀
    應(yīng)用衛(wèi)星通信領(lǐng)域的一個坐標<b class='flag-5'>轉(zhuǎn)換過程</b>—機體坐標系與ENU坐標系的<b class='flag-5'>轉(zhuǎn)換</b>
    主站蜘蛛池模板: 伊人在线视频| 免费毛片在线视频| 尤物国产在线精品三区| 恋夜直播午夜秀场最新| 99久久久精品| 色欲AV久久综合人妻蜜桃| 国产精品AV视频一二三区| 亚洲精品一二三区区别在哪| 免费特黄一区二区三区视频一| 成人区在线观看免费视频| 丝袜美女被艹| 久久精选视频| YELLOW日本动漫高清免费| 香蕉精品国产高清自在自线| 看免费人成va视频全| 国产99RE在线观看69热| 伊人影院亚洲| 日韩欧美视频一区二区在线观看 | 红杏俱乐部| MM131亚洲精品久久安然| 亚洲欧美高清在线| 日本xxxx69动漫| 美女直播喷水| 国产人妻人伦精品836700| 99国产精品久久| 一边摸一边桶一边脱免费| 三叶草成人| 欧美6O老妪与小伙交| 九九热最新视频| 国产三级在线观看免费| bbw美女与zooxx| 伊人久久精品线影院| 香艳69xxxxx有声小说| 日韩精品无码免费专区| 久久香蕉国产免费天天| 好硬好湿好大再深一点动态图| 国产成人精品视频免费大全| bl(高h)文| 97无码人妻精品1国产精东影业| 亚洲视频在线观看免费| 亚洲精品国产专区91在线|