開關電源現在是運用的非常廣了,但是任何電源都有一定的能量損耗,電腦電源就分了許多的轉換類型和效率。實際應用中無法獲得100%的轉換效率,但是,一個高質量的電源效率可以達到非常高的水平,效率接近95%。絕大多數電源IC 的工作效率可以在特定的工作條件下測得,數據資料中給出了這些參數。
一般廠商會給出實際測量的結果,但我們只能對我們自己的數據擔保。開關電源的損耗大部分來自開關器件(MOSFET 和二極管),另外小部分損耗來自電感和電容。但是,如果使用非常廉價的電感和電容(具有較高電阻),將會導致損耗明顯增大。選擇IC 時,需要考慮控制器的架構和內部元件,以期獲得高效指標。
1.開關器件的損耗 MOSFET 傳導損耗
絕大多數DC-DC 轉換器中的MOSFET 和二極管是造成功耗有損損耗的主要因素。相關損耗主要包括兩部分:傳導損耗和開關損耗。MOSFET 和二極管是開關元件,導通時電流流過回路。器件導通時,傳導損耗分別由MOSFET 的導通電阻和二極管的正向導通電壓決定。
MOSFET 的傳導損耗(PCOND(MOSFET))近似等于導通電阻RDS(ON)、占空比(D)和導通時MOSFET 的平均電流(IMOSFET(AVG))的乘積。
2.二極管傳導損耗
二極管的傳導損耗則在很大程度上取決于正向導通電壓(VF)。二極管通常比MOSFET 損耗更大,二極管損耗與正向電流、VF 和導通時間成正比。MOSFET 或二極管的導通時間越長,傳導損耗也越大。對于降壓型轉換器,輸出電壓越低,二極管產生的功耗也越大,因為它處于導通狀態的時間越長。
3.開關動態損耗
由于開關損耗是由開關的非理想狀態引起的,很難估算MOSFET 和二極管的開關損耗,器件從完全導通到完全關閉或從完全關閉到完全導通需要一定時間,在這個過程中會產生功率損。從上半部分波形可以看出,tSW(ON)和tSW(OFF)期間電壓和電流發生瞬變,MOSFET 的電容進行充電、放電。
選擇低導通電阻RDS(ON)、可快速切換的MOSFET;選擇低導通壓降VF、可快速恢復的二極管直接可以降低電源的開關損耗。
4.集成功率開關
功率開關集成到IC 內部時可以省去繁瑣的MOSFET 或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應,可以在一定程度上提高效率。根據功率等級和電壓限制,可以把MOSFET、二極管(或同步整流MOSFET)集成到芯片內部。將開關集成到芯片內部的另一個好處是柵極驅動電路的尺寸已經針對片內MOSFET 進行了優化,因而無需將時間浪費在未知的分立MOSFET 上。
5.無源元件損耗
我們已經了解MOSFET 和二極管會導致SMPS 損耗。采用高品質的開關器件能夠大大提升效率,但它們并不是唯一能夠優化電源效率的元件。在集成了兩個同步整流MOSFET,低RDS(ON) MOSFET,效率很高。這個電路中,開關元件集成在IC 內部,已經為具體應用預先選擇了元器件。然而,為了進一步提高效率,設計人員還需關注無源元件—外部電感和電容,了解它們對功耗的影響。
審核編輯 黃昊宇
-
開關電源
+關注
關注
6459文章
8328瀏覽量
481758
發布評論請先 登錄
相關推薦
評論