色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

邊緣計算的未來是MCU上的深度學習

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-10-30 06:43 ? 次閱讀

就在幾年前,人們普遍認為,機器學習(ML)甚至深度學習(DL)只能通過由網關、邊緣服務器或數據中心執行的邊緣訓練和推理,在高端硬件上完成。這種想法在當時不無道理,因為在云端和邊緣之間分配計算資源的趨勢尚處于早期發展階段。但如今,得益于業界和學術界的艱苦研發和不懈努力,情況已然發生了翻天覆地的變化。

處理器不必提供每秒數萬億次操作(TOPS),也能執行機器學習(ML)。越來越多的用例證明,只要使用最新微控制器(部分帶有嵌入式 ML 加速器),就能在邊緣設備上開展機器學習。

只需極低的成本和極低的功耗,這些設備就能出色地完成 ML,僅在絕對必要時才連接到云。簡而言之,內置 ML 加速器的微控制器代表著物聯網發展的下一階段:在生產數據的源頭,例如麥克風、攝像頭和監控其他環境條件的傳感器中引入智能計算,并使物聯網應用受益。

邊緣有多深?

目前普遍認為邊緣是物聯網網絡的最遠點,但通常指先進的網關或邊緣服務器。不過,這并不是邊緣的盡頭。真正的盡頭是鄰近用戶的傳感器。所以,合乎邏輯的做法是將盡可能多的分析能力安排在鄰近用戶的位置,而這也正是微處理器所擅長的。


不同寬度乘數下的多個 MobileNet V1 模型。寬度乘數對參數的數量、計算結果和精度都有顯著影響。但是,如果只是將寬度乘數從 1.0 改為 0.75,TOP-1 精度并無太大變化,參數的數量和算力需求卻明顯不同。

可以說,單板計算機也能用于邊緣處理,因為它們具有出色的性能,其集群可媲美一臺小型超級計算機。但問題是尺寸依然過大,而且對于大規模應用所需的成百上千次部署而言,成本過于高昂。它們還需要連接外部直流電源,在某些情況下可能超出可用范圍;相比之下,MCU 的功耗只有幾毫瓦,并且可以使用紐扣電池或一些太陽能電池來供電

毫無意外,用于在邊緣執行 ML 的微控制器成為了十分熱門的研發領域。甚至還有專有名稱– TinyML。TinyML 的目標就是允許在資源受限的小型低功耗設備(尤其是微控制器),而不是在更大的平臺或云端上執行模型推理,甚至最終能實現模型訓練。這就需要縮小神經網絡模型的尺寸,以容納這些設備中相對較少的算力、存儲空間和帶寬資源,同時不會嚴重降低功能性和精度。

這些方案對資源進行了優化,使設備可以采集充足的傳感器數據并發揮恰當作用,同時微調精度并降低資源要求。因此,雖然數據可能仍被發送到云端(或者可能是先發送到邊緣網關,然后再發送到云端),但數量少得多,因為相當大一部分的分析已經完成。

現實中,一個十分常見的 TinyML 用例就是基于攝像頭的對象檢測系統,盡管能夠捕獲高分辨率圖像,但由于存儲空間有限,只能降低圖像分辨率。可是,如果攝像頭內置了數據分析功能,則只會捕獲所需的對象而非整個場景,而且因為相關的圖像區域更小,能保留高分辨率圖像。這種功能通常只見于更大型、性能更強大的設備,但是 TinyML 技術使得微控制器也能實現。

小巧卻不簡單

盡管 TinyML 還只是相對較新的一種范式,但已經表現出了不容小覷的推理能力(即便使用的是相對溫和的微控制器)和訓練(在性能更強大的微控制器上)成效,且精度損耗控制在最低限度。最近的示例包括:語音和面部識別、語音命令和自然語言處理,甚至同時運行多個復雜的視覺算法

實際說來,這意味著一臺裝載 500-MHz Arm Cortex-M7 內核的微控制器,花費不超過 2 美元,內存容量從 28 Kb 到 128 KB 不等,卻能提供強大的性能,使傳感器實現真正智能。例如,恩智浦的 i.MX RT 跨界 MCU 就使用運行 TensorFlow Lite 運行時引擎的小型 ML 模型實現了此種性能。以基本對象識別為例,通常在 200 ms 內即可完成,而且精度接近 95%。

即使在這個價格和性能水平上,這些微處理器配備了多個安全功能(包括 AES-128),并支持多個外部存儲器類型、以太網USB 和 SPI,同時還包含或支持多種類型的傳感器以及藍牙Wi-Fi、SPDIF 和 I2C 音頻接口。價格稍高一些的設備則是通常搭載 1-GHz Arm Cortex-M7、400-MHz Cortex-M4、2 Mbytes RAM 和圖形加速。采用 3.3 VDC 電源供電時,功耗一般遠低于單板計算機。

TOPS 概述

會使用單一指標來評判性能的不僅是消費者;設計者和市場營銷部門也一直如此,因為作為一項主要規格,它可以輕松地區分設備。一個經典示例就是 CPU,多年來人們一直通過時鐘速率來評判性能;幸運的是,現在的設計者和消費者已不再如此。只用一個指標評定 CPU 性能就像是按照發動機的峰值轉速來評估汽車性能。盡管峰值轉速有一定參考意義,但幾乎無法體現發動機的強勁或汽車的駕駛性能,這些特性取決于許多其他因素。

遺憾的是,同樣的尷尬也發生在以每秒數十億次或上萬億次操作來界定的神經網絡加速器(包括高性能 MPU 或微控制器中的加速器),原因一樣,簡單的數字好記。在實踐中,單獨的 GOPS 和 TOPS 只是相對無意義的指標,代表的是實驗室而非實際操作環境中的一次測量結果(毫無疑問是最好的結果)。例如,TOPS 沒有考慮內存帶寬的限制、所需要的 CPU 開支、預處理和后處理以及其他因素。如果將所有這些和其他因素都一并考慮在內,例如在實際操作中應用于特定電路板時,系統級別的性能或許只能達到數據表上 TOPS 值的 50%或 60%。

所有這些數字都是硬件中的計算單元乘以對應的時鐘速率所得到的數值,而不是上需要運行時數據已經就緒的頻率。如果數據一直即時可用,也不存在功耗問題和內存限制,并且算法能無縫映射到硬件,則這種統計方式更有參考價值。然而,現實中并沒有這樣理想的環境。

當應用于微控制器中的 ML 加速器時,該指標更沒有價值。這些小型設備的 GOPS 值通常在 1-3 之間,但仍然能夠提供許多 ML 應用中所需要的推理功能。這些設備也依賴專為低功耗 ML 應用而設計的 Arm Cortex 處理器。除了支持整數和浮點運算以及微控制器中的許多其他功能之外,TOPS 或其他任何單一指標明顯無法充分定義性能,無論是單獨使用還是在系統中都是如此。

結論

隨著物聯網領域進一步發展,在邊緣執行盡可能多的處理,逐漸出現一種需求,即在直接位于或附著于傳感器上的微控制器上執行推理。也就是說,微處理器中應用處理器和神經網絡加速器的發展速度十分迅猛,更完善的解決方案也層出不窮。總體趨勢是將更多以人工智能為中心的功能(例如神經網絡處理)與應用處理器一起整合到微處理器中,同時避免功耗或尺寸顯著增加。

如今,可以先在功能更強大的 CPU 或 GPU 上訓練模型,然后在使用推理引擎(例如 TensorFlow Lite)的微控制器上實施,從而減小尺寸以滿足微控制器的資源要求。可輕松擴展,以適應更高的 ML 要求。相信不久之后,推理和訓練就能在這些設備上同時執行,讓微控制器的競爭力直追更大、更昂貴的計算解決方案。


審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • mcu
    mcu
    +關注

    關注

    146

    文章

    17135

    瀏覽量

    351032
  • 深度學習
    +關注

    關注

    73

    文章

    5500

    瀏覽量

    121118
  • 邊緣計算
    +關注

    關注

    22

    文章

    3085

    瀏覽量

    48905
收藏 人收藏

    評論

    相關推薦

    邊緣設備設計和部署深度神經網絡的實用框架

    ???? 機器學習深度學習應用程序正越來越多地從云端轉移到靠近數據源頭的嵌入式設備。隨著邊緣計算市場的快速擴張,多種因素正在推動
    的頭像 發表于 12-20 11:28 ?94次閱讀

    邊緣學習:降本增效,開啟物流新未來

    展現出獨特優勢。 邊緣學習作為深度學習的一個子集,具有易于部署和成本效益高的特點。它不需要復雜的編程知識,只需通過簡單的配置和訓練,即可快速投入使用。其在物流中的核心優勢,主要包括:
    的頭像 發表于 12-20 09:07 ?75次閱讀

    NPU在邊緣計算中的優勢

    隨著物聯網(IoT)和5G技術的發展,邊緣計算作為一種新興的計算模式,正在逐漸成為處理和分析數據的重要手段。 NPU的定義與功能 NPU是一種專門為深度
    的頭像 發表于 11-15 09:13 ?363次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發表于 10-25 09:22 ?215次閱讀

    邊緣計算未來發展趨勢

    邊緣計算未來發展趨勢呈現出多元化和高速增長的態勢,以下是對其未來發展趨勢的分析: 一、技術融合與創新 與5G、AI技術的深度融合 隨著5G
    的頭像 發表于 10-24 14:21 ?756次閱讀

    邊緣計算與云計算的區別

    邊緣計算與云計算是兩種不同的計算模式,它們在計算資源的分布、應用場景和特點存在顯著差異。以下是
    的頭像 發表于 10-24 14:08 ?388次閱讀

    FPGA做深度學習能走多遠?

    。FPGA的優勢就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學習未來會怎樣發展,能走多遠,你怎么看。 A:FPGA 在深度
    發表于 09-27 20:53

    基于深度學習的小目標檢測

    計算機視覺領域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得檢測難度顯著增加。隨著深度學習技術的快速發展,尤其是卷積神經網絡(CNN
    的頭像 發表于 07-04 17:25 ?867次閱讀

    深度學習計算機視覺領域的應用

    隨著人工智能技術的飛速發展,深度學習作為其中的核心技術之一,已經在計算機視覺領域取得了顯著的成果。計算機視覺,作為計算機科學的一個重要分支,
    的頭像 發表于 07-01 11:38 ?783次閱讀

    邊緣計算網關是什么?有什么作用

    、低成本、隱私安全以及本地自治的本地計算服務。那么,邊緣計算網關究竟是什么呢?它又有什么作用呢?接下來,我們將進行深度解析。 首先,讓我們來理解邊緣
    的頭像 發表于 04-16 15:25 ?3778次閱讀
    <b class='flag-5'>邊緣</b><b class='flag-5'>計算</b>網關是什么?有什么作用

    為什么深度學習的效果更好?

    導讀深度學習是機器學習的一個子集,已成為人工智能領域的一項變革性技術,在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成功。深度
    的頭像 發表于 03-09 08:26 ?621次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?

    什么是邊緣計算邊緣計算有哪些應用?

    什么是邊緣計算邊緣計算有哪些應用? 邊緣計算是一種將計算
    的頭像 發表于 01-09 11:29 ?1871次閱讀

    邊緣計算邊緣智能計算區別

    邊緣計算邊緣智能計算是兩個相關但不同的概念。邊緣計算指的是數據處理和存儲在靠近數據源的
    的頭像 發表于 12-27 15:28 ?1065次閱讀

    邊緣計算平臺是什么配置的

    邊緣計算平臺是一個分布式計算架構,可以在靠近數據源的邊緣設備執行計算任務。它解決了傳統
    的頭像 發表于 12-27 15:23 ?900次閱讀

    邊緣計算框架有哪些

    邊緣計算架構是一種將計算能力、存儲和分析功能盡可能地靠近數據源的計算模型。它通過將計算任務從中心數據中心移至近距離的設備
    的頭像 發表于 12-27 15:01 ?1477次閱讀
    主站蜘蛛池模板: 精品国产乱码久久久久久夜深人妻| 最美女人体内射精一区二区| 日本护士性生活| 免费毛片播放| 美女张开腿露尿口给男人亲| 久久麻豆国产国产AV| 九色PORNY丨视频入口| 好妞操| 黄A无码片内射无码视频| 国产亚洲精品久久久久久鸭绿欲 | 欧美日韩亚洲第一区在线| 六月婷婷国产精品综合| 久久草香蕉频线观| 久久久免费观看| 久久免费看少妇高潮A片2012| 浪荡女天天不停挨CAO日常视 | YELLOW在线观看高清视频免费 | 亚洲欧美日韩国产另类电影| 亚洲haose在线观看| 高中生高潮抽搐喷出白浆视频| p影院永久免费| ppypp午夜限制不卡影院私人| 成年人视频在线观看免费| 青青草原网址| 男人J桶女人P视频无遮挡网站| 免费看 a一级毛片| 欧美最猛12teevideos欧美| 日本免费无码A专区在线观看| 神马老子影院午夜伦| 亚欧成人毛片一区二区三区四区 | 嗯别插太快好深再深点| 清晨紧湿爱运动h高h| 日本一本2017国产| 邪恶肉肉全彩色无遮琉璃神社| 亚洲VA天堂VA欧美VA在线| 亚洲中文字幕日产乱码2020| 最新高清无码专区| 超嫩校花被灌醉在线观看| 国产精品三级在线观看 | 打卡中国各地奋斗第一线| 国产精品久久久久久人妻香蕉 |