概述
通過發(fā)射超聲能量進入人體,接收并處理返回的反射信號,相控陣超聲系統(tǒng)可以生成體內(nèi)器官和結構的圖像,映射血液流動和組織運動,同時提供高準確度的血流速度信息。傳統(tǒng)設計中,構建這樣的成像系統(tǒng)需要大量的高性能相控陣發(fā)射器和接收器,使得車載設備體積龐大且價格昂貴。近年來,隨著集成工藝的進步,設計人員能夠獲得小尺寸、低成本而且高度便攜的成像系統(tǒng)方案,并可達到接近大型成像設備的性能指標。而新的設計挑戰(zhàn)依然存在,即在進一步提高方案集成度的同時提高系統(tǒng)性能和診斷能力。
傳感器
成像系統(tǒng)的關鍵器件是超聲傳感器。典型的超聲成像系統(tǒng)需要使用各種傳感器支持特定的診斷要求。每個傳感器由一組壓電傳感器單元陣列構成,它們集中能量并發(fā)射到人體內(nèi)部,然后接收相應的反射信號。每個單元通過纖細的同軸電纜連接到超聲系統(tǒng)。通常,傳感器由 32 至 512 個單元構成,工作頻率為 1MHz 至 15MHz。多數(shù)超聲系統(tǒng)提供兩個至四個傳感器轉換接口,臨床醫(yī)生可根據(jù)不同的檢測類型方便地更換傳感器。
高壓復用開關
典型的相控陣超聲系統(tǒng)配備了 32 至 256 個發(fā)射器和接收器。多數(shù)情況下,系統(tǒng)配備的發(fā)射器和接收器的數(shù)量少于傳感器單元的數(shù)量。這些情況下,需要在傳感器或系統(tǒng)中安裝高壓開關,用于信號復用,開關連接在特定的傳感器單元和發(fā)送器 / 接收器(Tx/Rx)對之間。由此,系統(tǒng)能夠在所提供的傳感器陣列中動態(tài)改變有效的傳感器孔徑。
成像系統(tǒng)對高壓開關的要求主要包括幾個方面:必須能夠承受電壓擺幅高達 200VP-P 且峰值電流高達 2A 的發(fā)射脈沖;開關必須能夠迅速切換,以快速調整有效孔徑、滿足圖像幀率的要求;最后,這些開關還必須具有極小的電荷注入,從而避免雜散傳輸以及相關的虛假圖像。
超聲成像系統(tǒng)功能框圖。關于 Maxim 推薦的超聲方案
高壓發(fā)射機
數(shù)字發(fā)射波束成形器用于產(chǎn)生所要求的數(shù)字發(fā)射信號,以正確的時間和相位生成聚焦發(fā)射信號。高性能超聲系統(tǒng)可通過任意波形發(fā)生器產(chǎn)生復雜的發(fā)射波形,從而優(yōu)化圖像質量。這些情況下,發(fā)射波束成形器以大約 40MHz 速率生成 8 位至 10 位數(shù)字字符,并以此產(chǎn)生所要求的發(fā)射波形。數(shù) / 模轉換器(DAC)將數(shù)字波形轉換成模擬信號,通過線性高壓放大器進行放大,用于驅動傳感器單元。由于這種發(fā)射技術占用較大體積,而且價格昂貴、需要消耗較高能量,所以,這種架構只限于昂貴的非便攜設備。多數(shù)超聲系統(tǒng)并不使用這種發(fā)射波束成形技術,而是采用多級高壓脈沖發(fā)生器產(chǎn)生需要發(fā)射的信號。在這種替代方案中,利用高集成度、高壓脈沖發(fā)生器快速切換傳感器單元至適當?shù)目?a target="_blank">編程高壓電源,產(chǎn)生發(fā)射波形。為了產(chǎn)生一個簡單的兩極發(fā)射波形,脈沖發(fā)生器需要交替地將傳感器單元切換到由數(shù)字波束成形器控制的正、負發(fā)射電壓。更復雜的設計可以讓傳感器單元切換至多路電源和地,從而產(chǎn)生更復雜、性能更好的多重波形。
近幾年,隨著二次諧波成像的廣泛應用,高壓脈沖發(fā)生器對于斜率和對稱性的要求越來越高。二次諧波成像利用了人體的非線性聲學特性。這些非線性特性傾向于將頻率 fo 的聲能轉變成 2fo 頻率。多種原因使得接收二次諧波信號能夠獲得更高的圖像質量,因此,二次諧波成像得到了廣泛應用。
二次諧波成像有兩種基本的實現(xiàn)方法。一種稱為標準諧波成像,盡可能抑制發(fā)射信號的二次諧波,從而使接收到的二次諧波主要源于人體的非線性。這種模式要求二次諧波的發(fā)射能量至少低于基波能量 50dB。所以,發(fā)射脈沖的占空比要求是準確的 50%且誤差小于±0.2%。另一種方法稱為脈沖反相,利用反相后的發(fā)射脈沖產(chǎn)生同一圖像路徑的相位相反的兩路接收信號。在接收器中對這兩路反相接收信號求和,恢復由于人體非線性產(chǎn)生的諧波信號。這種脈沖反相的方法必須在疊加時盡可能抵消發(fā)射脈沖的反相成分。所以,高壓脈沖發(fā)生器的上升時間和下降時間必須嚴格一致。
成像通道接收機
超聲成像通道的接收機用于檢測二維(2D)信號以及彩超流體成像所需的脈沖多普勒(PWD)信號和頻譜 PWD。接收機包括 Tx/Rx 開關、低噪聲放大器(LNA)、可變增益放大器(VGA)、抗混疊濾波器(AAF)和模 / 數(shù)轉換器(ADC)。
Tx/Rx 開關
Tx/Rx 開關可以保護低噪聲放大器免受高壓發(fā)射脈沖的影響,同時在接收間歇期間隔離低噪聲放大器輸入和發(fā)射機。該開關一般采用一組正確偏置的二極管陣列實現(xiàn),當有高壓發(fā)射脈沖出現(xiàn)時,它們會自動閉合或斷開。Tx/Rx 開關必須具備很快的恢復時間,以保證接收機在發(fā)射一個脈沖后能夠立刻開啟。這些快速恢復時間對于淺埋成像和提供低導通電阻確保接收靈敏度至關重要。
低噪聲放大器(LNA)
接收機中的 LNA 必須具有出色的噪聲性能和足夠增益。對于設計合理的接收機,LNA 將決定整個接收機的噪聲性能。傳感器單元通過較長的同軸電纜連接到相應的低阻抗 LNA 的輸入端。如果沒有適當?shù)碾娎|終端匹配,電纜電容和傳感器單元的源阻抗將大大制約從寬帶傳感器接收信號的帶寬。傳感器電纜匹配至低阻,有助于降低這一濾波的影響,有效提高圖像質量。不幸的是,這種端接也降低了 LNA 的輸入信號,因而降低接收靈敏度。由此可見,為 LNA 提供有源輸入端接非常重要,可以在上述條件下提供必要的低輸入阻抗端接和出色的噪聲性能。
可變增益放大器(VGA)
VGA 有時也稱為時間增益控制(TGC)放大器,能夠在整個接收周期內(nèi)為接收機提供足夠的動態(tài)范圍。超聲信號在體內(nèi)大約每秒傳輸 1540 米,往返衰減率為 1.4dB/cm-MHz。發(fā)射一個超聲脈沖后,可立即在 LNA 輸入接收到高達 0.5VP-P 的回波信號,該信號會快速跌落到傳感器單元的熱噪聲基底。接收該信號所要求的動態(tài)范圍約為 100dB 至 110dB,超出了實際 ADC 的輸入量程。因此,需要利用 VGA 將信號轉換成與 ADC 量程相當?shù)男盘柗取5湫蛻弥胁捎?12 位 ADC,要求 VGA 能夠提供 30dB 至 40dB 的增益。增益隨時間調整(即“時間增益控制”),實現(xiàn)所要求的動態(tài)范圍。
超聲接收機的瞬態(tài)動態(tài)范圍也很關鍵,它會影響 2D 圖像的質量和系統(tǒng)檢測多普勒偏移(血液或組織的運動)的能力,尤其是在二次諧波成像系統(tǒng)中,感興趣的二次諧波信號明顯低于發(fā)射信號的基波。對于小的多普勒信號同樣如此,多普勒信號頻率可能在 1kHz 以內(nèi),幅度遠遠低于組織或血管壁的反射信號。因此,需要特別關注可變增益放大器的帶寬和近載波 SNR,這些參數(shù)通常是制約接收機性能的關鍵。
抗混疊濾波器(AAF)和 ADC
抗混疊濾波器 AAF 置于接收通道,用于濾除高頻噪聲和超出正常最大成像頻率范圍的信號,防止這些信號通過 ADC 轉換混疊至基帶。設計中大多采用可調節(jié)的 AAF,為了抑制混疊并保證信號的時域響應,濾波器需要對第一奈奎斯特頻率以外的信號進行衰減。因此,常常使用巴特沃斯濾波器或更高階的貝塞爾濾波器。
典型應用中采用 12 位 ADC,采樣率通常在 40Msps 至 60Msps 之間。ADC 提供必要的瞬態(tài)動態(tài)響應范圍,同時具有適當?shù)某杀竞凸摹T谠O計得當?shù)慕邮掌髦校珹DC 會限制接收通道的瞬態(tài) SNR。如上所述,性能差的 VGA 會限制整個接收通道的 SNR 指標。
數(shù)字波束成形器
ADC 的輸出信號通過高速 LVDS 串口傳輸給數(shù)字接收波束成形器。這種傳輸方式降低了 PCB 的設計復雜度和接口引腳數(shù)。波束成形器內(nèi)置上變頻低通濾波器或帶通數(shù)字濾波器,這些濾波器把有效采樣速率提高 4 倍,提高了系統(tǒng)波束成形的精度。上變頻信號存儲在內(nèi)存中,經(jīng)過適當?shù)难訒r,通過延遲系數(shù)加法器進行疊加,得到合適的焦點。信號還進行適當?shù)募訖嗷颉白冔E”,在疊加之前進行變跡,可以調節(jié)接收孔徑,降低旁瓣對接收波束的影響,提高圖像質量。
波束成形的數(shù)字信號處理
接收到的波束成形數(shù)字超聲信號由 DSP 和基于 PC 的設備進行處理,得到視頻和音頻輸出信號。這一過程通常可以劃分為 B 超或 2D 圖像處理,以及具有彩超流體成像信息的多普勒處理,多普勒處理又分為脈沖多普勒(PWD)處理和連續(xù)波多普勒(CWD)處理。
B 超處理
B 超處理中,RF 波束成形數(shù)字信號經(jīng)過濾波和檢波處理。檢測信號具有極寬的動態(tài)范圍,B 超處理器必須將這些信號進行數(shù)字壓縮,使其達到顯示器規(guī)定的動態(tài)范圍。
彩超流體信號處理
在彩超流體信號處理中,RF 數(shù)字波束成形信號與正交本振信號(LO,頻率為發(fā)射頻率)進行混頻,得到 I、Q 基帶信號。每個接收通道采集的超聲信號都有對應的幅度和相位。彩超流體信號處理中,8 至 16 路超聲信號集中在一個成像通道,測量多普勒頻移。血液流動或沿成像通道的組織移動產(chǎn)生的反射信號具有一定的多普勒頻移,從而改變了 I/Q 基帶采樣信號的相位。彩超流體處理器決定了成像通道的 8 至 16 路超聲信號的平均相移和時間關系。處理器還用彩色表示平均流速。通過這種方法,實現(xiàn)了血液或人體組織移動的二維造影成像。
多普勒頻譜
頻譜處理中,波束成形數(shù)字信號經(jīng)過數(shù)字濾波,并通過正交本振信號(LO,頻率為發(fā)射頻率)混頻至基帶信號,然后以發(fā)射脈沖重復頻率(PRF)進行采樣。利用復雜的快速傅里葉變換(FFT)獲得多普勒頻譜,以重現(xiàn)接收信號的速度信息。FFT 輸出的每個二進制信號幅度經(jīng)過計算和壓縮,使其達到顯示圖像所要求的動態(tài)范圍。最終信號幅度作為時間函數(shù),顯示在超聲設備的顯示屏上。
在連續(xù)波多普勒(CWD)成像系統(tǒng)中,信號處理的過程基本相同。除了處理這些顯示信號外,頻譜處理器還產(chǎn)生左、右聲道的立體聲音頻信號,表示正向和負向運動。DAC 對這些信號進行轉換,驅動外部揚聲器和耳機。
顯示處理
顯示處理器進行必要的計算,繪制極坐標圖。B 超中的聲音、圖像數(shù)據(jù)或彩超流體信息被處理成矩形位圖,從而消除圖像中的雜散信號。這一過程通常稱為 R-θ變換,顯示處理器還提供空間圖像增強功能。
連續(xù)波多普勒(CWD)
多數(shù)的心臟檢查和一些通用的超聲成像系統(tǒng)中,常常使用連續(xù)波多普勒 CWD 以確保精確測量心臟內(nèi)高速流動的血液。CWD 模式下,超聲傳感器單元以傳感器孔徑為中心分割成對等的兩部分。一半單元用于發(fā)射,產(chǎn)生 CWD 聚焦波束;另一半單元用于接收,產(chǎn)生聚焦的接收波束。發(fā)射單元的驅動波形為多普勒頻率的方波,頻率范圍通常為 1MHz 至 7.5MHz。發(fā)射波形的抖動必須足夠小,以防止相位噪聲對多普勒頻移檢測的影響。通過正確調整發(fā)射波形的相位,實現(xiàn)發(fā)射波束聚焦。類似地,通過正確調整接收波形的相位并進行疊加,實現(xiàn) CWD 接收信號聚焦。在此模式下,發(fā)射和接收同時進行,有用的多普勒信號頻率和不移動的人體組織在發(fā)射基波頻率下產(chǎn)生的強反射信號的頻率相差只有幾 kHz。處理如此大的信號所需要的動態(tài)范圍已經(jīng)超出了圖像接收通道 VGA、AAF 和 12 位 ADC 可以承受的范圍。因此,CWD 必須使用其它高動態(tài)范圍接收解決方案。
CWD 接收機通常使用兩種方法處理 CWD 信號。第一種方法是高性能超聲系統(tǒng)在 LNA 輸出端提取接收到的 CWD 信號。本振頻率等于發(fā)送頻率的混頻器對信號進行波束成形,再混頻至基帶進行處理。I/Q 本振信號可以逐通道調整相位,對接收到的 CWD 信號相位進行偏移。混頻器輸出相疊加,經(jīng)帶通濾波器,最后進入 ADC 進行采樣。采樣得到的基帶波束信號處于音頻范圍(100Hz 至 50kHz),采用工作在音頻頻率范圍的 ADC 對 I 和 Q CWD 信號進行數(shù)字化。這些 ADC 需要出色的動態(tài)范圍,以便處理運動組織產(chǎn)生的較大的低頻多普勒信號和血液產(chǎn)生的微弱信號。
另一種方法是使用延遲線接收 CWD 信號,該方法常用于低成本設備。在此方法中,信號還是從 LNA 輸出提取,然后轉化成電流信號。通過一個交叉開關對相同相位的通道進行疊加,產(chǎn)生 8 至 16 路獨立輸出,具體由接收波束成形器決定。延遲線產(chǎn)生延遲,并將這些信號求和構成一路波束成形 RF 信號,然后利用一個本振頻率等于發(fā)送頻率的 I/Q 混頻器將信號混頻至基帶,然后將基帶音頻信號濾波后,轉換至數(shù)字形式。
審核編輯黃宇
-
adc
+關注
關注
98文章
6495瀏覽量
544461 -
超聲
+關注
關注
1文章
102瀏覽量
21506 -
成像
+關注
關注
2文章
232瀏覽量
30475 -
信號
+關注
關注
11文章
2789瀏覽量
76730
發(fā)布評論請先 登錄
相關推薦
評論