色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于CFD領(lǐng)域的GPU加速設(shè)計解決方案

電子設(shè)計 ? 來源:e-works ? 作者:e-works ? 2021-03-27 12:18 ? 次閱讀

由于仿真軟件需要耗費大量計算資源,許多計算機輔助工程 (CAE) 應(yīng)用都可以從 GPU 的并行處理能力中大受裨益。與 CPU 相比,GPU 的密度更高而總體擁有成本更低,因此具有明顯的性價比優(yōu)勢,今天為大家分享基于CFD領(lǐng)域的GPU加速體驗。

計算流體仿真力學(xué),英文全稱Computational Fluid Dynamics,縮寫為CFD,它是數(shù)值數(shù)學(xué)和計算機科學(xué)結(jié)合的產(chǎn)物,通過空間離散和數(shù)值求解的思路,對流體力學(xué)的各類問題進(jìn)行數(shù)值實驗、模擬和分析研究,以解決學(xué)習(xí)、科研或者工程設(shè)計中的問題。

面對一個具體的工程問題,CFD工程師在應(yīng)用CFD工具進(jìn)行仿真分析時的基本流程,通常可以總結(jié)為五步:前處理、網(wǎng)格劃分、邊界條件加載、求解計算和后處理。但如何去平衡計算量(網(wǎng)格數(shù)量)和計算時間,對于很多CFD工程師都是個挑戰(zhàn)。

在實際解決問題的過程中,CFD工程師除了希望能選擇一款稱手的軟件工具外,當(dāng)然也希望計算機的主頻越高越好,核心越多越好。但是,核心與計算速度并非線性關(guān)系,不會因為核心等比例增長。若想在單臺電腦上發(fā)揮極限運算能力,還需要使用GPU加速,因為GPU加速通過協(xié)調(diào)處理器并行運算,能夠極大地提升計算能力,尤其適合多個項目同時進(jìn)行,這樣獲得的時間收益較大。

流體仿真為什么要選擇GPU?

CFD始終向處理更高精確度、更復(fù)雜的幾何結(jié)構(gòu)方向發(fā)展。但現(xiàn)階段,CFD軟件應(yīng)用于復(fù)雜流體問題方面還有待拓展,受到的阻礙主要源自以下三個方面:

● 隱式算法的高內(nèi)存要求——一些CFD分析工程師總是希望得到完美的殘差收斂曲線,以證明計算結(jié)果的可靠性,因此,他們會首選隱式算法,這意味著高內(nèi)存的需求;

● CFD結(jié)果對網(wǎng)格的強依賴性——網(wǎng)格的合理設(shè)計和高質(zhì)量生成是CFD計算的前提條件,是影響CFD計算結(jié)果的最主要的決定性因素之一,是CFD工作中人工工作量最大的部分,也是制約CFD工作效率的瓶頸問題之一。即使在CFD高度發(fā)達(dá)的國家,網(wǎng)格生成仍占整個CFD計算任務(wù)全部人力時間的70%~80%。

● 工程流體仿真問題復(fù)雜多變——在流體力學(xué)模擬中,由于流體力學(xué)模擬是個復(fù)雜的過程,存在極端變形、自由液面以及物質(zhì)運動交界面等問題,在應(yīng)用網(wǎng)格數(shù)值模擬時,會出現(xiàn)網(wǎng)格扭曲導(dǎo)致計算不收斂或者產(chǎn)生很大的計算誤差,需要重新模擬,這使得計算成本大大增加。

為了使CFD仿真發(fā)揮最大效用,CFD工程師往往需要快速得到計算結(jié)果。而借助于GPU加速計算所提供的非凡應(yīng)用程序性能,能將CFD程序計算密集部分的工作負(fù)載轉(zhuǎn)移到GPU,同時仍有CPU運行其余程序代碼,這樣計算速度大大提升。另外,從計算性能來看,在CFD應(yīng)用中單個GPU的性能遠(yuǎn)遠(yuǎn)優(yōu)于CPU,基于GPU加速的CFD計算速度明顯加快,很多復(fù)雜的CFD難題得以解決,因此,越來越多的CFD工程師選擇GPU加速。

流體仿真分析GPU評測

CFD是一個計算需求強烈的領(lǐng)域,GPU的選擇將從根本上決定CFD分析過程的體驗。在CFD分析中,工程師前期花費的時間主要在模型建立和修改上,后期真正的分析時間消耗在計算機上,因此,選擇一款適合自身的CFD軟件和高性能建模工作站就顯得尤為重要。接下來分享來自e-works平臺基于Altair CFD應(yīng)用軟件以及一些案例模型的實際評測,供大家參考:

基于Altair AcuSolve軟件的 GPU加速

【軟件環(huán)境介紹】Altair AcuSolve是一款基于GLS-FEM算法的通用熱流體求解器,不但有快速良好的收斂速度,還能達(dá)到很高的求解精度,同時對網(wǎng)格有良好的兼容性,特別方便于復(fù)雜模型網(wǎng)格的劃分,廣泛應(yīng)用于汽車、流體機械和海洋平臺等工業(yè)和科學(xué)應(yīng)用問題的解決。值得一提的是,最新版本的AcuSolve,不僅通過GPU加速提高了3~4倍的計算速度,同時也支持核態(tài)沸騰、熱輻射、冷凝/蒸發(fā)多相流和流固耦合(FSI)等CFD難題的解決。

硬件環(huán)境介紹】CPU采用單顆Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GH;GPU選用Quadro RTX 8000,它采用了NVIDIA Turing架構(gòu)和NVIDIA RTX平臺支持,對于追求以高穩(wěn)健性、高精度為目標(biāo)的CFD仿真分析帶來了卓越的計算性能體驗。

【測試模型】在新能源汽車、醫(yī)療設(shè)備、軍工設(shè)備等大功率密度的應(yīng)用場合,設(shè)備運行時會產(chǎn)生大量的熱損耗,為保證設(shè)備的安全運行,需要采用各種冷卻措施來對設(shè)備進(jìn)行冷卻,水冷是其中一種方式。以新能源車的水冷板為例,其設(shè)計直接影電池的溫度均勻性,進(jìn)而影響車輛的續(xù)航里程和安全性。本測試模型擁有網(wǎng)格數(shù)量4300萬,求解方程采用湍流+固體傳熱組合,湍流模型選擇基于SA一方程的模型,設(shè)置穩(wěn)態(tài)迭代步為200步,分別采用無GPU和1塊GPU加速進(jìn)行計算時間對比。

動力電池水冷板模型

計算時間對比

【測試結(jié)果】數(shù)據(jù)表明,無GPU加速時,水冷板分析的計算時間需要21小時;采用單塊Quadro RTX 8000加速,水冷板分析的計算時間只需要4小時。由此可見,采用Altair AcuSolve進(jìn)行水冷板仿真分析,并提供RTX GPU的增強支持,計算速度與無GPU加速相比提高了4.25倍。顯然,這種方式對于CFD工程師快速探索水冷板的設(shè)計,并根據(jù)準(zhǔn)確的計算結(jié)果做出決策非常有益。

基于Altair nanoFluidX軟件的 GPU加速

【軟件環(huán)境介紹】Altair nanoFluidX是一款基于粒子的流體動力學(xué) (SPH) 仿真工具,用于預(yù)測運動軌跡復(fù)雜的幾何結(jié)構(gòu)周圍的流體。以整車CFD仿真為例,傳統(tǒng)CFD方法需要建立網(wǎng)格耗時巨大,但Altair nanoFluidX基于粒子的特性,無需建立網(wǎng)格,還可基于GPU顯卡計算,非常有助于工程師獲得簡潔而高效的CFD解決方案。

【硬件環(huán)境介紹】CPU采用單顆Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GH;GPU選用Quadro RTX 8000和Tesla V100,由于Altair nanoFluidX采用的粒子方法,其計算是由一系列的流體粒子的相互作用完成,在計算中每個粒子所執(zhí)行的計算是完全相同的,而在不同的數(shù)據(jù)上執(zhí)行相同的程序,恰恰是GPU計算最擅長的。

【測試模型】整車涉水分析是近年來新興的CFD仿真領(lǐng)域,主要研究汽車以一定速度涉水時,關(guān)鍵零部件的進(jìn)水風(fēng)險,如防火墻滲水,傳統(tǒng)的發(fā)動機進(jìn)氣口進(jìn)水,電動汽車電氣短路等問題。整車涉水模型往往需要消耗大量的計算資源和時間進(jìn)行求解,以本次建立的整車涉水模型為例,擁有粒子數(shù)量為4100萬,設(shè)置車速為50公里/小時、瞬態(tài)物理時間為4秒,建立單相流模型,本次測試分別采用1塊RTX 8000 、2塊RTX 8000、4塊RTX 8000和4塊Tesla V100加速,對比計算時間。

整車涉水模型

計算時間對比

【測試結(jié)果】數(shù)據(jù)表明,采用1塊、2塊、4塊RTX 8000加速,整車涉水分析分別需要花費48小時、28小時、13小時;采用4塊V100,則需要16個小時。從計算時間來看,采用4塊RTX 8000加速,計算時間最少,與采用1塊RTX 8000加速相比,計算速度提升了約2.7倍。計算結(jié)果也表明,采用基于GPU加速和Altair nanoFluidX的組合方式,允許CFD工程師在一個更可接受的短時間內(nèi)研究類似整車涉水這樣的復(fù)雜流體問題。

基于Altair ultraFluidX軟件的 GPU加速

【軟件環(huán)境介紹】Altair ultraFluidX專用于超快預(yù)測乘用車、輕型卡車、賽車和重型車輛的空氣動力特性的仿真分析,它基于格子玻爾茲曼(LBM)技術(shù),無需建立網(wǎng)格,這大大縮短了建模時間,使得設(shè)計變得更加容易,同時保留了所有重要的幾何細(xì)節(jié)。

【硬件環(huán)境介紹】CPU采用單顆Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GH;GPU選用NVIDIA RTX8000和NVIDIA Tesla V100,由于Altair ultraFluidX采用的LBM方法,非常適合大規(guī)模并行架構(gòu),而采用GPU加速,可以明顯提高吞吐量,達(dá)到Altair ultraFluidX的周轉(zhuǎn)時間,同時降低硬件和能源成本。

【測試模型】對于車輛的早期開發(fā)優(yōu)化,采用CFD手段無疑是最有效且最經(jīng)濟(jì)的方法,但這類CFD分析往往是高內(nèi)存和高計算資源消耗的典型代表,需要使用GPU來優(yōu)化計算性能。以此次建立的汽車虛擬風(fēng)洞模型為例,擁有格子數(shù)量1億6千萬,格子的最小尺寸為1.8mm,設(shè)置車速為140公里/小時、瞬態(tài)物理時間為2秒,分別采用2塊NVIDIA RTX 8000、4塊NVIDIA RTX 8000和4塊V100加速,對比計算時間。

汽車虛擬風(fēng)洞模型

計算時間對比

【測試結(jié)果】數(shù)據(jù)表明,采用2塊、4塊NVIDIA RTX8000加速,模擬汽車虛擬風(fēng)洞分別需要花費14小時、8小時;采用4塊V100,則需要8.4個小時。三種GPU加速中,采用4塊NVIDIA RTX8000加速,計算時間最少,與采用2塊NVIDIA RTX8000加速相比,計算速度提升了約0.75倍。計算結(jié)果也表明,基于GPU和Altair ultraFluidX的組合方式,可以明顯加速汽車虛擬風(fēng)洞分析,有效縮短汽車開發(fā)周期。

總結(jié)

作為當(dāng)前最重要的三大協(xié)處理加速技術(shù)之一,GPU已經(jīng)成為數(shù)值分析的新寵,廣泛應(yīng)用于各個領(lǐng)域。以流體仿真領(lǐng)域為例,隨著CFD分析對計算能力的要求日益增高,越來越多的CFD工程師傾向于采用GPU加速,例如借助 RTX 8000 GPU加速,能以遠(yuǎn)低于傳統(tǒng) CPU 解決方案的成本、空間和功耗,獲得無與倫比的計算性能。

同時,在渲染方面,利用RTX 8000強大的運算能力,將流場和流體構(gòu)件建立數(shù)學(xué)模型,并用數(shù)字化可視化的形式表現(xiàn)出來,可以獲得任意位置的結(jié)果值,這無疑也極大地提高了設(shè)計的精確性。e-works認(rèn)為,優(yōu)秀的計算性能和尖端的數(shù)值方法的組合,在更短的時間內(nèi)研究復(fù)雜的流體問題,將成為未來CFD領(lǐng)域高效而主流的方式。

編輯:hfy

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4735

    瀏覽量

    128919
  • CFD
    CFD
    +關(guān)注

    關(guān)注

    1

    文章

    116

    瀏覽量

    18400
收藏 人收藏

    評論

    相關(guān)推薦

    《CST Studio Suite 2024 GPU加速計算指南》

    許可證模型的加速令牌或SIMULIA統(tǒng)一許可證模型的SimUnit令牌或積分授權(quán)。 4. GPU計算的啟用 - 交互式模擬:通過加速對話框啟用,打開求解器對話框,點擊“加速”按鈕,打
    發(fā)表于 12-16 14:25

    268.英偉達(dá)顯卡GPU占用0%,CPU占用100%3D游戲卡頓解決方案NVIDIA設(shè)置

    NVIDIAgpu顯卡解決方案英偉達(dá)
    小凡
    發(fā)布于 :2022年10月04日 15:16:33

    立體智慧倉儲解決方案.#云計算

    解決方案智能設(shè)備
    學(xué)習(xí)電子知識
    發(fā)布于 :2022年10月06日 19:45:47

    FPGA應(yīng)用領(lǐng)域解決方案

    FPGA應(yīng)用領(lǐng)域解決方案
    發(fā)表于 08-20 11:23

    FPGA典型應(yīng)用領(lǐng)域以及解決方案

    FPGA典型應(yīng)用領(lǐng)域以及解決方案
    發(fā)表于 08-20 13:36

    解決方案加速海嘯模擬

    挑戰(zhàn)海嘯模擬將物理過程模擬與大量深海數(shù)據(jù)相結(jié)合。這些計算通常在大規(guī)模并行超級計算機上完成,但具有硬件利用率低和性能差的缺陷。解決方案通過硬件浮點 FPGA 加速模擬內(nèi)循環(huán)可實現(xiàn)高達(dá) 383
    發(fā)表于 07-27 15:04

    GPU加速XenApp/Windows 2016/Office/IE性能會提高嗎

    大家好,我目前正在為使用XenServer 7.2和NVIDIA M10卡的客戶開發(fā)新的XenApp 7.14.1解決方案。在目前階段,我試圖通過分配給每個XenApp服務(wù)器的M10-8A vGPU
    發(fā)表于 09-12 16:24

    GPU加速matlab程序

    最近遇到了一個加速matlab程序的問題,不知道如何利用GPU,以及使用GPU的先決條件,是不是GPU加速必須要用cuda,最重要的是只用G
    發(fā)表于 03-30 11:21

    機器學(xué)習(xí)實戰(zhàn):GNN加速器的FPGA解決方案

    ,其算法的軟件實現(xiàn)方式非常低效,所以業(yè)界對GNN的硬件加速有著非常迫切的需求。我們知道傳統(tǒng)的CNN(卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò))硬件加速方案已經(jīng)有非常多的解決方案;但是,GNN的硬件
    發(fā)表于 10-20 09:48

    tengine是如何使用arm的GPU進(jìn)行加速

    【嵌入式AI】多目標(biāo)分類檢測系統(tǒng)實戰(zhàn)中,tengine是如何使用arm的GPU進(jìn)行加速的,這個原理能詳細(xì)說明一下嗎?
    發(fā)表于 09-02 14:18

    NVIDIA GPU解決方案亮相 推進(jìn)專業(yè)視聽產(chǎn)業(yè)升級

    亞太專業(yè)視聽和交互體驗式通信技術(shù)交流的平臺會議InfoComm China 2019在北京啟幕,作為全球視覺計算技術(shù)的行業(yè)領(lǐng)袖,NVIDIA攜專業(yè)視覺解決方案Quadro RTX GPU和虛擬GPU
    發(fā)表于 07-19 10:58 ?687次閱讀

    FPGA與GPU計算存儲加速對比

    為了提升計算基礎(chǔ)設(shè)施的性能,并緊跟數(shù)據(jù)分析與 AI 不斷攀升的需求,眾多企業(yè)將硬件加速視為主要的解決方案。在大多數(shù)情況下,先進(jìn)的可編程硬件(主要是指 GPU 和 FPGA)是加速的主要
    的頭像 發(fā)表于 08-02 08:03 ?2235次閱讀
    FPGA與<b class='flag-5'>GPU</b>計算存儲<b class='flag-5'>加速</b>對比

    采用賽靈思Alveo的CFD內(nèi)核加速

    電子發(fā)燒友網(wǎng)站提供《采用賽靈思Alveo的CFD內(nèi)核加速.pdf》資料免費下載
    發(fā)表于 09-13 10:39 ?0次下載
    采用賽靈思Alveo的<b class='flag-5'>CFD</b>內(nèi)核<b class='flag-5'>加速</b>

    直播就在明天!Cadence Fidelity 水泵水輪機 CFD 模擬解決方案和應(yīng)用

    Fidelity 為工具,圍繞“全自動化結(jié)構(gòu)網(wǎng)格劃分”、“計算魯棒性”、“氣蝕”以及“性能優(yōu)化”等為主題展開討論水泵水輪機 CFD 模擬解決方案和應(yīng)用。 直播時間 2023 年 11 月 22 日(周三)19:30 在線報名 點擊下方小程序報名 關(guān)于 Cadence C
    的頭像 發(fā)表于 11-21 15:50 ?602次閱讀
    直播就在明天!Cadence Fidelity 水泵水輪機 <b class='flag-5'>CFD</b> 模擬<b class='flag-5'>解決方案</b>和應(yīng)用

    全新Ansys Fluent Web用戶界面支持訪問大規(guī)模多GPU CFD仿真

    基于Web的技術(shù)將釋放云計算的強大功能,加速CFD仿真,從而減少對硬件資源的依賴
    的頭像 發(fā)表于 02-25 09:59 ?694次閱讀
    主站蜘蛛池模板: hd性欧美俱乐部中文| 国产精品97久久久久久AV色戒 | 国产精品久久久亚洲偷窥女厕 | 在线视频网站www色| 草神被爆漫画羞羞漫画| 很黄很色60分钟在线观看| 欧美区一区二| 亚洲精品第一国产综合| 99久久99久久精品免费看子| 国产全部视频列表支持手机| 奶头好翘是不是想要了| 寻找最美乡村教师颁奖晚会| AV天堂午夜精品一区| 黄色三级网址| 色哟哟tv| 9797在线看片亚洲精品| 国产专区青青在线视频| 秋霞电影院兔费理论84MB| 一区二区三区高清视频| 四虎永久精品视频在线| 中文字幕欧美一区| 国产精品自在在线午夜精品| 暖暖日本大全免费观看| 亚洲色图在线观看视频| 国产成人高清在线观看播放| 免费亚洲视频| 亚洲综合久久一本伊伊区| 观赏女性排尿| 欧美日韩亚洲中字二区| 真人裸交有声性动态图| 国产偷国产偷亚洲高清app| 日本久久久| 97久久国产露脸精品国产| 娇小XXXXX第一次出血| 无限资源在线完整高清观看1 | 征服艳妇后宫春色| 国产亚洲精品久久久闺蜜| 三级黄网站| thermo脱色摇床安卓下载| 美女被男人撕衣舔胸| 夜色伊甸园|