10 月 25 日,喀什地區(qū)疏附縣 24 日發(fā)現(xiàn) 1 例新冠肺炎無癥狀感染者后,新疆迅速對其密切接觸者、密切接觸者的接觸者進(jìn)行核酸檢測,截至 10 月 25 日 14 時(shí),檢測出 137 人呈陽性,經(jīng)專家診斷,均為無癥狀感染者。
后疫情時(shí)代,無癥狀感染者正成為疫情復(fù)發(fā)最大的威脅。沒有任何胸悶發(fā)熱癥狀,你和同伴可能很難區(qū)分是否感染了新冠。
但人工智能可以,只要你給 TA 聽聽你的咳嗽聲。 在最近發(fā)表在《IEEE 醫(yī)學(xué)與生物學(xué)工程學(xué)雜志》上的一篇論文中,麻省理工學(xué)院的研究人員表示,他們已經(jīng)開發(fā)出可以識別 COVID-19 感染者咳嗽聲的 AI。
論文地址:
https://www.embs.org/ojemb/articles/covid-19-artificial-intelligence-diagnosis-using-only-cough-recordings/
據(jù)論文顯示,研究小組開發(fā)了一種 AI 模型,該模型通過分析你的咳嗽錄音,可以將無癥狀感染者與健康的人區(qū)分開來。所有人都可以通過網(wǎng)絡(luò)瀏覽器以及手機(jī)和筆記本電腦等設(shè)備自愿提交錄音。 研究人員稱,該模型由他們一直以來進(jìn)行的 “咳嗽檢測阿爾茲海默早期癥狀”演變而來,疫情以來,研究者通過 “網(wǎng)絡(luò)眾籌”的方式,已經(jīng)在全球搜集了 20 多萬的咳嗽樣本,建立了有史以來最大的 “咳嗽數(shù)據(jù)庫”。
通過這些咳嗽樣本和錄入的相關(guān)感染、性別、情緒數(shù)據(jù),對該模型進(jìn)行了聲音訓(xùn)練。
目前,該模型識別出確診為 Covid-19 的人的咳嗽的準(zhǔn)確率為 98.5%,其中,利用咳嗽聲識別無癥狀感染者的準(zhǔn)確度高達(dá) 100%。 麻省理工的研究小組正在努力將該模型整合到一個(gè)用戶友好的應(yīng)用程序中,如果獲得 FDA 的批準(zhǔn)并被大規(guī)模采用,該程序?qū)⒂锌赡艹蔀橐环N免費(fèi)、便捷、無創(chuàng)的預(yù)篩查工具,以識別可能對 Covid-19 無癥狀的人。
用戶可以每天登錄,錄下咳嗽聲到他們的手機(jī)中,并立即獲得有關(guān)他們是否可能被感染的信息。 麻省理工學(xué)院自動(dòng)識別實(shí)驗(yàn)室的研究科學(xué)家布萊恩 · 蘇比拉納(Brian Subirana)與麻省理工學(xué)院自動(dòng) ID 實(shí)驗(yàn)室的 Jordi Laguarta 和 Ferran Hueto 聯(lián)合完成了這項(xiàng)研究。
從阿茲海默癥檢測到新冠檢測
其實(shí)這項(xiàng)算法并非為新冠定制。
早在疫情爆發(fā)之前,這個(gè)研究小組已經(jīng)在咳嗽的手機(jī)錄音中訓(xùn)練算法,以準(zhǔn)確診斷肺炎和哮喘等疾病。麻省理工學(xué)院的團(tuán)隊(duì)正在以類似的方式開發(fā) AI 模型,以分析強(qiáng)迫咳嗽記錄,以查看它們是否可以檢測出阿爾茨海默氏癥的體征,這種疾病不僅與記憶力下降有關(guān),而且還與神經(jīng)肌肉退化(如聲帶減弱)有關(guān)。 他們首先訓(xùn)練了一種通用的機(jī)器學(xué)習(xí)算法或稱為 ResNet50 的神經(jīng)網(wǎng)絡(luò),以區(qū)分與不同聲帶強(qiáng)度相關(guān)的聲音。研究表明,聲音 “ mmmm”的質(zhì)量可以表明一個(gè)人的聲帶有多弱。Subirana 在包含了 1000 多個(gè)小時(shí)語音的有聲讀物數(shù)據(jù)集上訓(xùn)練了神經(jīng)網(wǎng)絡(luò),以從 “ the”和 “ then”等其他詞中挑選出 “ them”一詞。 該小組訓(xùn)練了第二個(gè)神經(jīng)網(wǎng)絡(luò)來區(qū)分言語中明顯的情緒狀態(tài),因?yàn)橐炎C明阿爾茨海默氏癥患者以及神經(jīng)系統(tǒng)較弱的人表現(xiàn)出某些情緒,例如沮喪或平淡無奇,比他們表達(dá)快樂還是冷靜的情緒更高。
研究人員通過在大型演員數(shù)據(jù)集上訓(xùn)練情緒情感分類器(例如中性,平靜,快樂和悲傷)來開發(fā)情緒語音分類器模型。 然后,研究人員在咳嗽數(shù)據(jù)庫上訓(xùn)練了第三個(gè)神經(jīng)網(wǎng)絡(luò),以辨別肺和呼吸功能的變化。 最后,該團(tuán)隊(duì)將這三個(gè)模型結(jié)合在一起,并疊加了一種算法來檢測肌肉退化。該算法通過實(shí)質(zhì)上模擬音頻蒙版或噪聲層,并區(qū)分強(qiáng)咳嗽(通過噪聲可以聽到的咳嗽)與較弱的咳嗽,來做到這一點(diǎn)。 通過新的 AI 框架,該團(tuán)隊(duì)提供了包括阿爾茨海默氏癥患者在內(nèi)的音頻記錄,發(fā)現(xiàn)與現(xiàn)有模型相比,它可以更好地識別阿爾茨海默氏癥的樣本。
結(jié)果表明,聲帶強(qiáng)度、情緒、肺和呼吸功能以及肌肉退化是診斷該疾病的有效生物標(biāo)志物。 當(dāng)冠狀病毒大流行開始蔓延時(shí),Subirana 想知道他們針對阿爾茨海默氏癥的 AI 框架是否也可以用于診斷 Covid-19,因?yàn)樵絹碓蕉嗟淖C據(jù)表明感染的患者會(huì)經(jīng)歷一些類似的神經(jīng)系統(tǒng)癥狀,例如暫時(shí)性神經(jīng)肌肉損傷。 “說話和咳嗽的聲音都受到聲帶和周圍器官的影響。這意味著當(dāng)講話時(shí),部分講話就像是咳嗽,反之亦然。這也意味著我們很容易從流利的言語中衍生出一些東西,人工智能可以簡單地從咳嗽中發(fā)現(xiàn)一些信息,包括人的性別、母語甚至情緒狀態(tài)。實(shí)際上,您的咳嗽中蘊(yùn)含著情感。” Subirana 說。
“所以我們認(rèn)為,為什么我們不嘗試探究這些阿茲海默癥的生物標(biāo)志物(以及看它們是否與 Covid 相關(guān))”。
20 萬 + 咳嗽樣本,已知最大的咳嗽研究數(shù)據(jù)集
在 4 月,研究小組著手收集盡可能多的咳嗽記錄,包括來自 Covid-19 患者的咳嗽記錄。
他們建立了一個(gè)網(wǎng)站,人們可以通過手機(jī)或其他支持網(wǎng)絡(luò)的設(shè)備記錄一系列咳嗽。參與者還填寫了他們正在經(jīng)歷的癥狀的調(diào)查表,無論他們是否患有 Covid-19,是否通過官方測試,通過醫(yī)生對其癥狀的評估或是否經(jīng)過自我診斷而得到了診斷。他們還可以記錄自己的性別,地理位置和母語。
迄今為止,研究人員已經(jīng)收集了 70,000 多條錄音,每條錄音包含多個(gè)咳嗽聲,總計(jì)約 200,000 咳嗽音頻樣本,Subirana 說這是 “已知最大的咳嗽研究數(shù)據(jù)集”。確認(rèn)患有 Covid-19 的人(包括無癥狀的人)提交了大約 2500 份錄音。
該團(tuán)隊(duì)使用了 2,500 個(gè)與 Covid 相關(guān)的記錄,以及他們從集合中隨機(jī)選擇的另外 2500 個(gè)記錄來平衡數(shù)據(jù)集。他們使用了 4,000 個(gè)樣本來訓(xùn)練 AI 模型。然后將其余的 1,000 個(gè)記錄輸入模型中,以查看它能否準(zhǔn)確區(qū)分出 Covid 患者和健康個(gè)體的咳嗽。
令人驚訝的是,正如研究人員在論文中所寫的那樣,他們的努力揭示了 “阿爾茨海默氏癥和新冠咳嗽算法之間驚人的相似之處”。
他們發(fā)現(xiàn),在原本用于阿爾茨海默氏癥的 AI 框架內(nèi)無需進(jìn)行大量調(diào)整,他們就能找到針對 Covid-19 的四種生物標(biāo)志物的模式 - 聲帶強(qiáng)度、情緒、肺和呼吸功能以及肌肉退化。該模型從 Covid-19 確診的人中識別出 98.5% 的咳嗽,并準(zhǔn)確地檢測到了所有無癥狀的咳嗽。
Subirana 說:“我們認(rèn)為這表明,即使您沒有癥狀,當(dāng)您擁有 Covid 時(shí),您產(chǎn)生聲音的方式也會(huì)改變。”
100% 檢測到無癥狀感染者
Subirana 強(qiáng)調(diào),這種 AI 模型的優(yōu)勢不在于檢測有癥狀的新冠患者,不管他們的癥狀是由于 Covid-19 還是其他癥狀(如流感或哮喘)引起的。該工具的優(yōu)勢在于它能夠分辨無癥狀新冠感染者的咳嗽和健康的咳嗽。
MIT的團(tuán)隊(duì)正在與一家公司合作,根據(jù)他們的 AI 模型開發(fā)免費(fèi)的預(yù)檢應(yīng)用程序。他們還與世界各地的多家醫(yī)院合作,收集更大,更多樣化的咳嗽記錄集,這將有助于訓(xùn)練和增強(qiáng)模型的準(zhǔn)確性。
正如他們在論文中提出的那樣,“如果預(yù)篩查工具始終在后臺并且不斷改進(jìn),那么泛濫癥就可能成為過去。”
最終,他們設(shè)想可以將他們開發(fā)的音頻 AI 模型集成到智能揚(yáng)聲器和其他聽音設(shè)備中,以便人們可以方便地(也許每天)對他們的疾病風(fēng)險(xiǎn)進(jìn)行初步評估。
責(zé)任編輯:PSY
-
AI
+關(guān)注
關(guān)注
87文章
30763瀏覽量
268914 -
MIT
+關(guān)注
關(guān)注
3文章
253瀏覽量
23389 -
智能醫(yī)療
+關(guān)注
關(guān)注
27文章
1383瀏覽量
74475
發(fā)布評論請先 登錄
相關(guān)推薦
評論