色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

計算機視覺CV領域圖像分類方向文獻和代碼的超全總結和列表!

新機器視覺 ? 來源:新機器視覺 ? 作者:新機器視覺 ? 2020-11-03 10:08 ? 次閱讀

今天給大家介紹自 2014 年以來,計算機視覺 CV 領域圖像分類方向文獻和代碼的超全總結和列表!總共涉及 36 種 ConvNet 模型。該 GitHub 項目作者是 weiaicunzai,項目地址是:

https://github.com/weiaicunzai/awesome-image-classification

背景

我相信圖像識別是深入到其它機器視覺領域一個很好的起點,特別是對于剛剛入門深度學習的人來說。當我初學 CV 時,犯了很多錯。我當時非常希望有人能告訴我應該從哪一篇論文開始讀起。到目前為止,似乎還沒有一個像 deep-learning-object-detection 這樣的 GitHub 項目。因此,我決定建立一個 GitHub 項目,列出深入學習中關于圖像分類的論文和代碼,以幫助其他人。

對于學習路線,我的個人建議是,對于那些剛入門深度學習的人,可以試著從 vgg 開始,然后是 googlenet、resnet,之后可以自由地繼續閱讀列出的其它論文或切換到其它領域。

性能表

基于簡化的目的,我只從論文中列舉出在 ImageNet 上準確率最高的 top1 和 top5。注意,這并不一定意味著準確率越高,一個網絡就比另一個網絡更好。因為有些網絡專注于降低模型復雜性而不是提高準確性,或者有些論文只給出 ImageNet 上的 single crop results,而另一些則給出模型融合或 multicrop results。

關于性能表的標注:

ConvNet:卷積神經網絡的名稱

ImageNet top1 acc:論文中基于 ImageNet 數據集最好的 top1 準確率

ImageNet top5 acc:論文中基于 ImageNet 數據集最好的 top5 準確率

Published In:論文發表在哪個會議或期刊

論文&代碼

1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

pdf: https://arxiv.org/abs/1409.1556

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

pdf:https://arxiv.org/abs/1409.4842

code: unofficial-tensorflow :

https://github.com/conan7882/GoogLeNet-Inception

code: unofficial-caffe :

https://github.com/lim0606/caffe-googlenet-bn

3.PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1502.01852

code: unofficial-chainer :

https://github.com/nutszebra/prelu_net

4.ResNet

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1512.03385

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py

code: unofficial-keras :

https://github.com/raghakot/keras-resnet

code: unofficial-tensorflow :

https://github.com/ry/tensorflow-resnet

5.PreActResNet

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1603.05027

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua

code: official :

https://github.com/KaimingHe/resnet-1k-layers

code: unoffical-pytorch :

https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py

code: unoffical-mxnet :

https://github.com/tornadomeet/ResNet

6.Inceptionv3

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

pdf:https://arxiv.org/abs/1512.00567

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

7.Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

pdf:https://arxiv.org/abs/1602.07261

code: unofficial-keras :

https://github.com/kentsommer/keras-inceptionV4

code: unofficial-keras :

https://github.com/titu1994/Inception-v4

code: unofficial-keras :

https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

Resnet in Resnet: Generalizing Residual Architectures

Sasha Targ, Diogo Almeida, Kevin Lyman

pdf:https://arxiv.org/abs/1603.08029

code: unofficial-tensorflow :

https://github.com/SunnerLi/RiR-Tensorflow

code: unofficial-chainer :

https://github.com/nutszebra/resnet_in_resnet

9.Stochastic Depth ResNet

Deep Networks with Stochastic Depth

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

pdf:https://arxiv.org/abs/1603.09382

code: unofficial-torch :

https://github.com/yueatsprograms/Stochastic_Depth

code: unofficial-chainer :

https://github.com/yasunorikudo/chainer-ResDrop

code: unofficial-keras :

https://github.com/dblN/stochastic_depth_keras

10.WRN

Wide Residual Networks

Sergey Zagoruyko, Nikos Komodakis

pdf:https://arxiv.org/abs/1605.07146

code: official :

https://github.com/szagoruyko/wide-residual-networks

code: unofficial-pytorch :

https://github.com/xternalz/WideResNet-pytorch

code: unofficial-keras :

https://github.com/asmith26/wide_resnets_keras

code: unofficial-pytorch :

https://github.com/meliketoy/wide-resnet.pytorch

11.squeezenet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size?

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

pdf:https://arxiv.org/abs/1602.07360

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

code: unofficial-caffe :

https://github.com/DeepScale/SqueezeNet

code: unofficial-keras :

https://github.com/rcmalli/keras-squeezenet

code: unofficial-caffe :

https://github.com/songhan/SqueezeNet-Residual

12.GeNet

Genetic CNN

Lingxi Xie, Alan Yuille

pdf:https://arxiv.org/abs/1703.01513

code: unofficial-tensorflow :

https://github.com/aqibsaeed/Genetic-CNN

12.MetaQNN

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

pdf:https://arxiv.org/abs/1703.01513

code: official :https://github.com/bowenbaker/metaqnn

13.PyramidNet

Deep Pyramidal Residual Networks

Dongyoon Han, Jiwhan Kim, Junmo Kim

pdf:https://arxiv.org/abs/1610.02915

code: official :

https://github.com/jhkim89/PyramidNet

code: unofficial-pytorch :

https://github.com/dyhan0920/PyramidNet-PyTorch

14.DenseNet

Densely Connected Convolutional Networks

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1608.06993

code: official :

https://github.com/liuzhuang13/DenseNet

code: unofficial-keras :

https://github.com/titu1994/DenseNet

code: unofficial-caffe :

https://github.com/shicai/DenseNet-Caffe

code: unofficial-tensorflow :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/bamos/densenet.pytorch

code: unofficial-keras :

https://github.com/flyyufelix/DenseNet-Keras

15.FractalNet

FractalNet: Ultra-Deep Neural Networks without Residuals

Gustav Larsson, Michael Maire, Gregory Shakhnarovich

pdf:https://arxiv.org/abs/1605.07648

code: unofficial-caffe :

https://github.com/gustavla/fractalnet

code: unofficial-keras :

https://github.com/snf/keras-fractalnet

code: unofficial-tensorflow :

https://github.com/tensorpro/FractalNet

16.ResNext

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

pdf:https://arxiv.org/abs/1611.05431

code: official :

https://github.com/facebookresearch/ResNeXt

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py

code: unofficial-pytorch :

https://github.com/prlz77/ResNeXt.pytorch

code: unofficial-keras :

https://github.com/titu1994/Keras-ResNeXt

code: unofficial-tensorflow :

https://github.com/taki0112/ResNeXt-Tensorflow

code: unofficial-tensorflow :

https://github.com/wenxinxu/ResNeXt-in-tensorflow

17.IGCV1

Interleaved Group Convolutions for Deep Neural Networks

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

pdf:https://arxiv.org/abs/1707.02725

code official :

https://github.com/hellozting/InterleavedGroupConvolutions

18.Residual Attention Network

Residual Attention Network for Image Classification

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

pdf:https://arxiv.org/abs/1704.06904

code: official :

https://github.com/fwang91/residual-attention-network

code: unofficial-pytorch :

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch

code: unofficial-gluon :

https://github.com/PistonY/ResidualAttentionNetwork

code: unofficial-keras :

https://github.com/koichiro11/residual-attention-network

19.Xception

Xception: Deep Learning with Depthwise Separable Convolutions

Fran?ois Chollet

pdf:https://arxiv.org/abs/1610.02357

code: unofficial-pytorch :

https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py

code: unofficial-tensorflow :

https://github.com/kwotsin/TensorFlow-Xception

code: unofficial-caffe :

https://github.com/yihui-he/Xception-caffe

code: unofficial-pytorch :

https://github.com/tstandley/Xception-PyTorch

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

20.MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

pdf:https://arxiv.org/abs/1704.04861

code: unofficial-tensorflow :

https://github.com/Zehaos/MobileNet

code: unofficial-caffe :

https://github.com/shicai/MobileNet-Caffe

code: unofficial-pytorch :

https://github.com/marvis/pytorch-mobilenet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

21.PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

pdf:https://arxiv.org/abs/1611.05725

code: official :

https://github.com/open-mmlab/polynet

22.DPN

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

pdf:https://arxiv.org/abs/1707.01629

code: official :

https://github.com/cypw/DPNs

code: unoffical-keras :

https://github.com/titu1994/Keras-DualPathNetworks

code: unofficial-pytorch :

https://github.com/oyam/pytorch-DPNs

code: unofficial-pytorch :

https://github.com/rwightman/pytorch-dpn-pretrained

23.Block-QNN

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

pdf:https://arxiv.org/abs/1708.05552

24.CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

pdf:https://arxiv.org/abs/1703.02180

code official :

https://github.com/cypw/CRU-Net

code unofficial-mxnet :

https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

25.ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

pdf:https://arxiv.org/abs/1707.01083

code: unofficial-tensorflow :

https://github.com/MG2033/ShuffleNet

code: unofficial-pytorch :

https://github.com/jaxony/ShuffleNet

code: unofficial-caffe :

https://github.com/farmingyard/ShuffleNet

code: unofficial-keras :

https://github.com/scheckmedia/keras-shufflenet

26.CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1711.09224

code: official :

https://github.com/ShichenLiu/CondenseNet

code: unofficial-tensorflow :

https://github.com/markdtw/condensenet-tensorflow

27.NasNet

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

pdf:https://arxiv.org/abs/1707.07012

code: unofficial-keras :

https://github.com/titu1994/Keras-NASNet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py

code: unofficial-pytorch :

https://github.com/wandering007/nasnet-pytorch

code: unofficial-tensorflow :

https://github.com/yeephycho/nasnet-tensorflow

28.MobileNetV2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

pdf:https://arxiv.org/abs/1801.04381

code: unofficial-keras :

https://github.com/xiaochus/MobileNetV2

code: unofficial-pytorch :

https://github.com/Randl/MobileNetV2-pytorch

code: unofficial-tensorflow :

https://github.com/neuleaf/MobileNetV2

29.IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

pdf:https://arxiv.org/abs/1804.06202

30.hier

Hierarchical Representations for Efficient Architecture Search

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

pdf:https://arxiv.org/abs/1711.00436

31.PNasNet

Progressive Neural Architecture Search

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

pdf:https://arxiv.org/abs/1712.00559

code: tensorflow-slim :

https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py

code: unofficial-pytorch :

https://github.com/chenxi116/PNASNet.pytorch

code: unofficial-tensorflow :

https://github.com/chenxi116/PNASNet.TF

32.AmoebaNet

Regularized Evolution for Image Classifier Architecture Search

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

pdf:https://arxiv.org/abs/1802.01548

code: tensorflow-tpu :

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

33.SENet

Squeeze-and-Excitation Networks

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

pdf:https://arxiv.org/abs/1709.01507

code: official :

https://github.com/hujie-frank/SENet

code: unofficial-pytorch :

https://github.com/moskomule/senet.pytorch

code: unofficial-tensorflow :

https://github.com/taki0112/SENet-Tensorflow

code: unofficial-caffe :

https://github.com/shicai/SENet-Caffe

code: unofficial-mxnet :

https://github.com/bruinxiong/SENet.mxnet

34.ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

pdf:https://arxiv.org/abs/1807.11164

code: unofficial-pytorch :

https://github.com/Randl/ShuffleNetV2-pytorch

code: unofficial-keras :

https://github.com/opconty/keras-shufflenetV2

code: unofficial-pytorch :

https://github.com/Bugdragon/ShuffleNet_v2_PyTorch

code: unofficial-caff2:

https://github.com/wolegechu/ShuffleNetV2.Caffe2

35.IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

pdf:https://arxiv.org/abs/1806.00178

code: official :

https://github.com/homles11/IGCV3

code: unofficial-pytorch :

https://github.com/xxradon/IGCV3-pytorch

code: unofficial-tensorflow :

https://github.com/ZHANG-SHI-CHANG/IGCV3

36.MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

pdf:https://arxiv.org/abs/1807.11626

code: unofficial-pytorch :

https://github.com/AnjieZheng/MnasNet-PyTorch

code: unofficial-caffe :

https://github.com/LiJianfei06/MnasNet-caffe

code: unofficial-MxNet :

https://github.com/chinakook/Mnasnet.MXNet

code: unofficial-keras :

https://github.com/Shathe/MNasNet-Keras-Tensorflow

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • CV
    CV
    +關注

    關注

    0

    文章

    53

    瀏覽量

    16877
  • 圖像分類
    +關注

    關注

    0

    文章

    90

    瀏覽量

    11939
  • 計算機視覺
    +關注

    關注

    8

    文章

    1698

    瀏覽量

    46031

原文標題:?CV 圖像分類常見的 36 個模型匯總!附完整論文和代碼

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    計算機視覺有哪些優缺點

    計算機視覺作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術的發展不僅推動了多個行業的變革,也
    的頭像 發表于 08-14 09:49 ?1025次閱讀

    計算機視覺中的圖像融合

    在許多計算機視覺應用中(例如機器人運動和醫學成像),需要將多個圖像的相關信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準確性和數據
    的頭像 發表于 08-01 08:28 ?709次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>中的<b class='flag-5'>圖像</b>融合

    機器視覺計算機視覺有什么區別

    機器視覺計算機視覺是兩個密切相關但又有所區別的概念。 一、定義 機器視覺 機器視覺,又稱為計算機
    的頭像 發表于 07-16 10:23 ?557次閱讀

    計算機視覺的五大技術

    計算機視覺作為深度學習領域最熱門的研究方向之一,其技術涵蓋了多個方面,為人工智能的發展開拓了廣闊的道路。以下是對計算機
    的頭像 發表于 07-10 18:26 ?1428次閱讀

    計算機視覺的工作原理和應用

    計算機視覺(Computer Vision,簡稱CV)是一門跨學科的研究領域,它利用計算機和數學算法來模擬人類
    的頭像 發表于 07-10 18:24 ?2076次閱讀

    計算機視覺和機器視覺區別在哪

    計算機視覺和機器視覺是兩個密切相關但又有明顯區別的領域。 一、定義 計算機視覺
    的頭像 發表于 07-09 09:22 ?468次閱讀

    計算機視覺圖像處理的區別和聯系

    計算機視覺圖像處理是兩個密切相關但又有明顯區別的領域。 1. 基本概念 1.1 計算機視覺
    的頭像 發表于 07-09 09:16 ?1367次閱讀

    計算機視覺在人工智能領域有哪些主要應用?

    計算機視覺是人工智能領域的一個重要分支,它主要研究如何讓計算機能夠像人類一樣理解和處理圖像和視頻數據。
    的頭像 發表于 07-09 09:14 ?1462次閱讀

    計算機視覺屬于人工智能嗎

    屬于,計算機視覺是人工智能領域的一個重要分支。 引言 計算機視覺是一門研究如何使計算機具有
    的頭像 發表于 07-09 09:11 ?1345次閱讀

    計算機視覺怎么給圖像分類

    圖像分類計算機視覺領域中的一項核心任務,其目標是將輸入的圖像自動分配到預定義的類別集合中。這一
    的頭像 發表于 07-08 17:06 ?770次閱讀

    深度學習在計算機視覺領域的應用

    深度學習技術的引入,極大地推動了計算機視覺領域的發展,使其能夠處理更加復雜和多樣化的視覺任務。本文將詳細介紹深度學習在計算機
    的頭像 發表于 07-01 11:38 ?845次閱讀

    機器視覺計算機視覺的區別

    在人工智能和自動化技術的快速發展中,機器視覺(Machine Vision, MV)和計算機視覺(Computer Vision, CV)作為兩個重要的分支
    的頭像 發表于 06-06 17:24 ?1363次閱讀

    計算機視覺的主要研究方向

    計算機視覺(Computer Vision, CV)作為人工智能領域的一個重要分支,致力于使計算機能夠像人眼一樣理解和解釋
    的頭像 發表于 06-06 17:17 ?1004次閱讀

    計算機視覺的十大算法

    隨著科技的不斷發展,計算機視覺領域也取得了長足的進步。本文將介紹計算機視覺領域的十大算法,包括它
    的頭像 發表于 02-19 13:26 ?1267次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>的十大算法

    計算機視覺:AI如何識別與理解圖像

    計算機視覺是人工智能領域的一個重要分支,它致力于讓機器能夠像人類一樣理解和解釋圖像。隨著深度學習和神經網絡的發展,人們對于如何讓AI識別和理解圖像
    的頭像 發表于 01-12 08:27 ?1481次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>:AI如何識別與理解<b class='flag-5'>圖像</b>
    主站蜘蛛池模板: 亚洲欧美自拍清纯中文字幕| 国产成+人+综合+亚洲不卡| 国产欧美在线亚洲一区刘亦菲| 少妇伦子伦精品无码| 国产亚洲精品A久久777777| 亚洲天堂一区二区三区| 秘密教学93话恩爱久等了免费| NANANA在线观看高清影院| 视频一区视频二区在线观看| 花蝴蝶免费版高清版| 99亚洲精品| 性欧美videos俄罗斯| 噜噜噜狠狠夜夜躁| 动漫美女喷水| 一色屋精品亚洲香蕉网站| 日本美女抠逼| 久草色视频| 动漫美女搞鸡| 在镜头里被CAO翻了H| 日韩中文字幕亚洲无线码| 精品久久久久久久99热| 成人性视频全过程| 影音先锋亚洲AV少妇熟女| 色戒床震视频片段| 久久两性视频| 国产成a人片在线观看视频99| 伊人久久久久久久久久| 漂亮的av女演员| 久久久久综合网| 国产精品私人玩物在线观看 | 日本电影护士| 久久re视频这里精品09首页| 芭乐视频网页版在线观看| 夜月视频直播免费观看| 日韩精品亚洲专区在线影院| 久青草影院| 国产亚洲精品首页在线播放| 仓井空torrent| 综合人妻久久一区二区精品| 亚洲国产精品无码AV久久久| 日韩在线中文字幕无码|