色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

NLP:谷歌Transformer再升級

ss ? 來源:學術頭條 ? 作者:學術頭條 ? 2020-11-06 17:31 ? 次閱讀

當我們在翻譯軟件上輸入 “Transformer is a novel neural network architecture based on a self-attention mechanism” 后,計算機就可以迅速將它翻譯為 “Transformer 是一種基于自注意力機制的新型神經網絡架構”,神奇的機器翻譯使得多語種互譯成為可能。

近年來,得益于機器學習的快速發展,自然語言處理(NLP)技術不斷突破,在人機交互、在線翻譯工具等領域的應用層出不窮,不同語種的人與人、人與機器之間的無障礙自由交流得以實現。

當前的主流機器翻譯主要是基于神經網絡機器翻譯,這類方法是一個 “編碼器-解碼器”(encoder-decoder)架構的系統,編碼器對源語言序列進行編碼,并提取信息,然后通過解碼器把信息轉換為目標語言,完成語言翻譯過程。

自 2017 年問世以來,基于“編碼器-解碼器”架構設計的 Transformer 模型憑借其優越的性能,已然成為機器翻譯領域的主流模型,在深度學習領域產生了巨大影響。

然而,Transformer 模型并非完美,模型引入self-attention機制雖實現了快速并行的訓練,但在長序列文本的處理問題上,卻需要占據大量計算資源,導致模型訓練成本提高。

近日,由 Google、劍橋大學、DeepMind 和艾倫·圖靈研究院(Alan Turing Institute)的研究人員組成的團隊基于正交隨機特征的快速注意力(Fast Attention Via Positive Orthogonal Random Features,FAVOR+)機制,提出了一種新的 Transformer 模型——Performer。相比于 Transformer 模型,新模型無需做出過度調整就可以變得更加高效和節能。

Performer 模型的技術突破

2017 年,谷歌大腦(Google Brain)的 Ashish Vaswani 等人發表了一篇題為 “Attention Is All You Need” 的論文,首次提出一種基于自注意力機制的 Transformer 模型。

Transformer 模型顛覆了傳統神經網絡的架構,彌補了卷積神經網絡(CNN)和遞歸神經網絡(RNN)存在的不足,在語義特征提取、長距離特征捕獲、任務綜合特征抽取等自然語言處理方面表現出了更優的性能,在自然語言處理、人機對話、圖像處理等許多領域都達到了當時最好的水平(SOTA)。

Transformer 架構的核心模塊是自注意力模塊,模型在處理每個單詞(輸入序列中的每個位置)時,自注意力模塊通過計算輸入序列中所有位置對的相似度分數,來尋找能夠幫助更好地編碼該單詞的線索。

然而,隨著輸入序列長度的增加,模型需要二次方的計算時間來產生所有相似度分數,所需計算內存也隨之增加,注意力機制面臨的效率問題也越來越突出。

針對那些需要長距離關注的應用,在 Transformer 基礎上已經有一些研究者提出了幾種快速的、空間利用率高的改進方法,但是大部分常見方法都依賴于稀疏注意力機制。

然而,稀疏注意力機制仍存在一定的局限性。

(1)它們需要高效的稀疏矩陣乘法運算,而這些運算并不是在所有加速器上都能實現的;(2)它們通常不能為其表示能力提供嚴格的理論保證;(3)它們主要針對 Transformer 模型和生成式預訓練進行優化;(4)它們通常會疊加更多的注意力層來補償稀疏表示,這使得它們很難與其他預訓練模型一起使用,因此需要重新訓練并消耗大量能量。

此外,稀疏注意機制通常仍然不足以解決常規注意方法應用的全部問題,如指針網絡。還有一些運算不能被稀疏化,如在工業推薦系統中被大量應用的 softmax 運算。

Performer 使用了一個高效的(線性)廣義注意力框架,能夠對常規(softmax)全階注意力進行可證明的、準確的、實用的估計,不依賴于任何稀疏性或低階等先驗條件,從而實現更快的訓練速度,同時允許模型處理更長的序列,這一特性恰恰滿足了 ImageNet64 圖像數據集和PG-19文本數據集的要求。

Performer 模型通過正交隨機特征(FAVOR+)算法實現快速注意力機制,并改用 Positive Orthogonal Random Features 估計 softmax 和高斯核函數,以實現在 FAVOR+ 機制中對常規 softmax 注意力進行魯棒且無偏的估計。

研究人員表示:“Performer 是第一個通過微調可以與常規 Transformers 進行完全兼容的線性架構”。

左圖 | 原點對稱的通用函數 r(定義為建立在:三角隨機特征和正隨機特征上的估計器的均方誤差(MSEs)的比值)是輸入特征向量與其長度l之間的角度 φ(以弧度為單位)的函數, 函數的數值越大表示正隨機特征性能越好的(φ,l)空間區域;

右圖 | 當l為定值 1 時,與變化的角度 φ 構成的函數 r 為正切函數;右上角 | 比較低 softmax 內核值區域中兩個估算器的 MSE。

作者通過比較發現,對于 φ 足夠大的臨界區域,該方法所使用的正交隨機特征比任意的三角隨機特征更精確。

圖| 我們將原始的經過預訓練的 Transformer 的權重轉移到 Performer 中,Performer 產的精度達到 0.07 (橙色虛線),但在原來的梯度步數的一小部分中,很快就恢復了精度。然而在 PG-19 上,三角法(TRIG) softmax 逼近變得非常不穩定,而正特征(POS)(不重繪)和 Linformer (也是逼近 softmax)即使在重繪投影的情況下,也會在同樣的復雜度中趨于平穩。具有特征重繪的正 softmax 是匹配 Transformer 的必要條件,SMREG 可實現更快的收斂。

這篇論文利用詳細的數學定理,證明了與其單純依靠計算資源來提升性能,還不如開發出改進的、高效的 Transformer 架構,來顯著降低能耗。同時,由于 Performers 使用了與 Transformer 相同的訓練超參數,也可以有效訓練基于 softmax 的線性 Transformer。因此 FAVOR+ 機制可以作為一個簡單的插件,而無需進行過多的調整。

Performer 模型應用前景廣泛

研究人員表示,Performer 模型的提出,顯著降低了常規 Transformer 的空間和時間復雜度,并在 Transformer 的研究以及非稀疏注意機制的作用方面開辟了新的途徑。

該論文利用詳細的數學定理,證明了與其單純依靠計算資源來提升性能,還不如開發出改進的、高效的 Transformer 架構,來顯著降低能耗。同時,由于 Performers 使用了與 Transformer 相同的訓練超參數,因此 FAVOR+ 機制可以作為一個簡單的插件,而無需進行過多的調整。

該團隊在一系列豐富的場景下測試了 Performers 的性能,執行的任務包括像素預測、蛋白質序列建模。在實驗設置中,一個 Performer 只用 FAVOR+ 機制取代了常規 Transformer 的注意力組件。

在使用蛋白質序列訓練一個 36 層模型的挑戰性任務上,基于 Performer 的模型(Performer-RELU)的性能優于基線 Transformer 模型:Reformer 和 Linformer,后者的準確率顯著下降。

在標準的 ImageNet64 基準上,具有 6 層的 Performer 與具有 12 層的 Reformer 的準確性相當。優化后,Performer 的速度達到了 Reformer 的兩倍。

研究人員表示,由于基于 Performer 的可擴展 Transformer 架構可以處理更長的序列,而不受注意力機制結構的限制,同時保持準確和魯棒性,相信它們可以在生物信息學領域帶來新的突破,如蛋白質的語言建模等技術已經顯示出強大的潛力。

責任編輯:xj

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 谷歌
    +關注

    關注

    27

    文章

    6172

    瀏覽量

    105625
  • Transformer
    +關注

    關注

    0

    文章

    144

    瀏覽量

    6022
  • 自然語言
    +關注

    關注

    1

    文章

    288

    瀏覽量

    13360
  • nlp
    nlp
    +關注

    關注

    1

    文章

    489

    瀏覽量

    22053
收藏 人收藏

    評論

    相關推薦

    Transformer模型的具體應用

    如果想在 AI 領域引領一輪新浪潮,就需要使用到 Transformer
    的頭像 發表于 11-20 09:28 ?488次閱讀
    <b class='flag-5'>Transformer</b>模型的具體應用

    Transformer模型能夠做什么

    盡管名為 Transformer,但它們不是電視銀幕上的變形金剛,也不是電線桿上垃圾桶大小的變壓器。
    的頭像 發表于 11-20 09:27 ?343次閱讀
    <b class='flag-5'>Transformer</b>模型能夠做什么

    Snapchat聊天機器人集成谷歌Gemini技術

    Snap與谷歌云的戰略合作升級,為Snapchat平臺注入了新的智能活力。雙方宣布,Snapchat的My AI聊天機器人將深度集成谷歌Gemini技術,這一創新舉措標志著Snapc
    的頭像 發表于 09-25 14:51 ?299次閱讀

    優惠升級,華秋PCB首單最高立減100元,返2000元優惠券

    優惠升級,華秋PCB首單最高立減100元,返2000元優惠券
    的頭像 發表于 08-30 12:06 ?379次閱讀
    優惠<b class='flag-5'>再</b><b class='flag-5'>升級</b>,華秋PCB首單最高立減100元,<b class='flag-5'>再</b>返2000元優惠券

    Transformer能代替圖神經網絡嗎

    Transformer作為一種在處理序列數據方面表現出色的深度學習模型,自其提出以來,已經在自然語言處理(NLP)、時間序列分析等領域取得了顯著的成果。然而,關于Transformer是否能完全代替圖神經網絡(GNN)的問題,需
    的頭像 發表于 07-12 14:07 ?479次閱讀

    Transformer語言模型簡介與實現過程

    在自然語言處理(NLP)領域,Transformer模型以其卓越的性能和廣泛的應用前景,成為了近年來最引人注目的技術之一。Transformer模型由谷歌在2017年提出,并首次應用于
    的頭像 發表于 07-10 11:48 ?1851次閱讀

    Transformer架構在自然語言處理中的應用

    隨著人工智能技術的飛速發展,自然語言處理(NLP)領域取得了顯著的進步。其中,Transformer架構的提出,為NLP領域帶來了革命性的變革。本文將深入探討Transformer架構
    的頭像 發表于 07-09 11:42 ?850次閱讀

    nlp邏輯層次模型的特點

    NLP(自然語言處理)邏輯層次模型是一種用于理解和生成自然語言文本的計算模型。它將自然語言文本分解為不同的層次,以便于計算機更好地處理和理解。以下是對NLP邏輯層次模型特點的分析: 詞匯層次 詞匯
    的頭像 發表于 07-09 10:39 ?415次閱讀

    nlp神經語言和NLP自然語言的區別和聯系

    神經語言(Neuro-Linguistic Programming,NLP) 神經語言是一種心理學方法,它研究人類思維、語言和行為之間的關系。NLP的核心理念是,我們可以通過改變我們的思維方式和語言
    的頭像 發表于 07-09 10:35 ?800次閱讀

    nlp自然語言處理框架有哪些

    自然語言處理(Natural Language Processing,簡稱NLP)是計算機科學和人工智能領域的一個重要分支,它致力于使計算機能夠理解和處理人類語言。隨著技術的發展,NLP領域出現了
    的頭像 發表于 07-09 10:28 ?584次閱讀

    NLP模型中RNN與CNN的選擇

    在自然語言處理(NLP)領域,循環神經網絡(RNN)與卷積神經網絡(CNN)是兩種極為重要且廣泛應用的網絡結構。它們各自具有獨特的優勢,適用于處理不同類型的NLP任務。本文旨在深入探討RNN與CNN
    的頭像 發表于 07-03 15:59 ?555次閱讀

    什么是自然語言處理 (NLP)

    自然語言處理(Natural Language Processing, NLP)是人工智能領域中的一個重要分支,它專注于構建能夠理解和生成人類語言的計算機系統。NLP的目標是使計算機能夠像人類一樣
    的頭像 發表于 07-02 18:16 ?1217次閱讀

    使用PyTorch搭建Transformer模型

    Transformer模型自其問世以來,在自然語言處理(NLP)領域取得了巨大的成功,并成為了許多先進模型(如BERT、GPT等)的基礎。本文將深入解讀如何使用PyTorch框架搭建Transformer模型,包括模型的結構、訓
    的頭像 發表于 07-02 11:41 ?1691次閱讀

    谷歌大型模型終于開放源代碼,遲到但重要的開源戰略

    在人工智能領域,谷歌可以算是開源的鼻祖。今天幾乎所有的大語言模型,都基于谷歌在 2017 年發布的 Transformer 論文;谷歌的發布的 BERT、T5,都是最早的一批開源 AI
    發表于 02-22 18:14 ?453次閱讀
    <b class='flag-5'>谷歌</b>大型模型終于開放源代碼,遲到但重要的開源戰略

    基于Transformer模型的壓縮方法

    基于Transformer架構的大型模型在人工智能領域中發揮著日益重要的作用,特別是在自然語言處理(NLP)和計算機視覺(CV)領域。
    的頭像 發表于 02-22 16:27 ?674次閱讀
    基于<b class='flag-5'>Transformer</b>模型的壓縮方法
    主站蜘蛛池模板: 兔费看少妇性L交大片免费| 国产激情视频在线| 成人免费观看www视频| 国自产精品手机在线视频| 男人有噶坏| 亚洲黄色在线观看| av淘宝 在线观看| 国内视频在线精品一区| 漂亮妈妈中文字幕版| 亚洲呦女专区| 国产成人女人视频在线观看| 美女扣逼软件| 亚洲国产精品高清在线| se01短视频在线观看| 久久只有这里有精品4| 伊人精品在线| 久久亚洲高清观看| 40分钟超爽大片黄| 美国CERANETWORK超清| 国产精品免费小视频| 男同志china免费视频| 亚洲精品视频免费观看| 芳草地社区在线视频| 男人插曲女人下生免费大全| 亚洲色播永久网址大全| 国产互换后人妻的疯狂VIDEO| 男女亲吻摸下面吃奶视频| 一二三四高清中文版视频| 国产精品亚洲国产三区| 日韩欧美高清一区| JLZZJLZZJLZ老师好多的水| 美女被爽cao免费漫画| 伊人久99久女女视频精品免| 果冻传媒2021精品在线观看| 偷窥美女3| 高清午夜福利电影在线 | 国产在线亚洲v天堂a| 挺进绝色老师的紧窄小肉六| 成人亚洲视频| 欧美一级久久久久久久久大| 799是什么意思网络用语|