色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深入討論GraphSAGE GNN算法的數學原理

電子工程師 ? 來源:FPGA設計論壇 ? 作者:FPGA設計論壇 ? 2020-11-11 09:26 ? 次閱讀

1.概述

得益于大數據的興起以及算力的快速提升,機器學習技術在近年取得了革命性的發展。在圖像分類、語音識別、自然語言處理等機器學習任務中,數據為大小維度確定且排列有序的歐氏(Euclidean)數據。然而,越來越多的現實場景中,數據是以圖(Graph)這種復雜的非歐氏數據來表示的。Graph不但包含數據,也包含數據之間的依賴關系,比如社交網絡、蛋白質分子結構、電商平臺客戶數據等等。數據復雜度的提升,對傳統的機器學習算法設計以及其實現技術帶來了嚴峻的挑戰。在此背景之下,諸多基于Graph的新型機器學習算法—GNN(圖神經網絡),在學術界和產業界不斷的涌現出來。 GNN對算力和存儲器的要求非常高,其算法的軟件實現方式非常低效,所以業界對GNN的硬件加速有著非常迫切的需求。我們知道傳統的CNN(卷積神經網絡網絡)硬件加速方案已經有非常多的解決方案;但是,GNN的硬件加速尚未得到充分的討論和研究,在本文撰寫之時,Google和百度皆無法搜索到關于GNN硬件加速的中文研究。本文的撰寫動機,旨在將國外最新的GNN算法、加速技術研究、以及筆者對GNN的FPGA加速技術的探討相結合起來,以全景圖的形式展現給讀者。

2.GNN簡介

GNN的架構在宏觀層面有著很多與傳統CNN類似的地方,比如卷積層、Polling、激活函數、機器學習處理器(MLP)和FC層等等模塊,都會在GNN中得以應用。下圖展示了一個比較簡單的GNN架構。

圖 1:典型的GNN架構 但是, GNN中的Graph數據卷積計算與傳統CNN中的2D卷積計算是不同的。以圖2為例,針對紅色目標節點的卷積計算,其過程如下: lGraph卷積:以鄰居函數采樣周邊節點特征并計算均值,其鄰居節點數量不確定且無序(非歐氏數據)。 l2D卷積:以卷積核采樣周邊節點特征并計算加權平均值,其鄰居節點數量確定且有序(歐氏數據)。

圖 2:Graph卷積和2D卷積

3.GraphSAGE算法簡介

學術界已對GNN算法進行了非常多的研究討論,并提出了數目可觀的創新實現方式。其中,斯坦福大學在2017年提出的GraphSAGE是一種用于預測大型圖中動態新增未知節點類型的歸納式表征學習算法,特別針對節點數量巨大、且節點特征豐富的圖做了優化。如下圖所示,GraphSAGE計算過程可分為三個主要步驟:

圖 3:GraphSAGE算法的視覺表述 l鄰節點采樣:用于降低復雜度,一般采樣2層,每一層采樣若干節點 l聚合:用于生成目標節點的embedding,即graph的低維向量表征 l預測:將embedding作為全連接層的輸入,預測目標節點d的標簽 為了在FPGA中實現GraphSAGE算法加速,我們需要知悉其數學模型,以便將算法映射到不同的邏輯模塊中。下圖所示的代碼闡述了本算法的數學過程。

圖 4:GraphSAGE算法的數學模型 對于每一個待處理的目標節點xv,GraphSAGE 執行下列操作: 1)通過鄰居采樣函數N(v),采樣子圖(subgraph)中的節點 2)聚合被采樣的鄰節點特征,聚合函數可以為mean()、lstm()或者polling()等 3)將聚合結果與上一次迭代的輸出表征合并,并以Wk做卷積 4)卷積結果做非線性處理 5)迭代若干次以結束當前第k層所有鄰節點的處理 6)將第k層迭代結果做歸一化處理 7)迭代若干次以結束所有K層采樣深度的處理 8)最終迭代結果zv即為輸入節點xv的嵌入(embedding)

4.GNN加速器設計挑戰

GNN的算法中涉及到大量的矩陣計算和內存訪問操作,在傳統的x86架構的服務器上運行此算法是非常低效的,表現在速度慢,能耗高等方面。 新型GPU的應用,可以為GNN的運算速度和能效比帶來顯著收益。然而GPU內存擴展性的短板,使其無法勝任海量節點Graph的處理;GPU的指令執行方式,也造成了計算延遲過大并且不可確定,無法勝任需要實時計算Graph的場景。 如上所述種種設計挑戰的存在,使得業界急需一種可以支持高度并發實時計算、巨大內存容量和帶寬、以及在數據中心范圍可擴展的GNN加速解決方案。5.GNN加速器的FPGA設計方案Achronix 公司推出的 Speedster7t系列高性能FPGA,專門針對數據中心和機器學習工作負載進行了優化,消除了CPU、GPU以及傳統 FPGA 存在的若干性能瓶頸。Speedster7t FPGA 基于臺積電的 7nm FinFET 工藝,其架構采用革命性的新型 2D 片上網絡 (NoC),獨創的機器學習處理器矩陣 (MLP),并利用高帶寬 GDDR6 控制器、400G 以太網和 PCI Express Gen5 接口,在保障ASIC 級別性能的同時,為用戶提供了靈活的硬件可編程能力。下圖展示了Speedster7t1500高性能FPGA的架構。

圖5: Achronix Speedster7t1500高性能FPGA 架構 如上所述種種特性,使得Achronix Speedster7t1500 FPGA器件為GNN加速器設計中所面臨的各種挑戰,提供了完美的解決方案。 表1:GNN設計挑戰與Achronix的Speedster7t1500 FPGA解決方案

GNN設計挑戰 Speedster7t1500解決方案
高速矩陣運算 MLP機器學習處理器矩陣
高帶寬低延遲存儲 LRAM+BRAM+GDDR6+DDR4
高并發低延遲計算 FPGA使用可編程邏輯電路,在硬件層面確保低高并發延遲計算
內存擴展 基于4*400Gbps的RDMA,確保在數據中心范圍以極低延遲擴展內存訪問
算法不斷演進 FPGA使用可編程邏輯電路,在硬件層面確保算法可升級重配
設計復雜 豐富的硬IP減少開發時間和復雜度,NoC簡化模塊間互連并提高時序

5.1GNN加速器頂層架構

本GNN加速器針對GraphSAGE進行設計,但其架構具有一定的通用性,可以適用于其他類似的GNN算法加速,其頂層架構如下圖所示。

圖6: GNN加速器頂層架構 圖中GNN Core為算法實現的核心部分,其設計細節將在下文展開談論;RoCE-Lite為RDMA協議的輕量級版本,用于通過高速以太網進行遠程內存訪問,以支持海量節點的Graph計算,其設計細節將在本公眾號的后續文章中討論;400GE以太網控制器用來承載RoCE-Lite協議;GDDR6用于存放GNN處理過程中所需的高速訪問數據;DDR4作為備用高容量內存,可以用于存儲相對訪問頻度較低的數據,比如待預處理的Graph;PCIe Gen5x16提供高速主機接口,用于與服務器軟件交互數據;上述所有模塊,皆通過NoC片上網絡來實現高速互聯。 5.2GNNCore微架構 在開始討論GNN Core 微架構之前,我們先回顧一下本文第3節中的GraphSAGE算法,其內層循環的聚合以及合并(包含卷積)等兩個操作占據了算法的絕大部分計算和存儲器訪問。通過研究,我們得到這兩個步驟的特征如下: 表2:GNN算法中聚合與合并操作對比

聚合操作 (Aggregation) 合并操作 (Combination)
存儲器訪問模式 間接訪問,不規則 直接訪問,規則
數據復用
計算模式 動態,不規則 靜態,規則
計算量
性能瓶頸 存儲 計算

可以看出,聚合操作與合并操作,其對計算和存儲器訪問的需求完全不同。聚合操作中涉及到對鄰節點的采樣,然而Graph屬于非歐氏數據類型,其大小維度不確定且無序,矩陣稀疏,節點位置隨機,所以存儲器訪問不規則并難以復用數據;在合并操作中,其輸入數據為聚合結果(節點的低維表征)以及權重矩陣,其大小維度固定,存儲位置規則線性,對存儲器訪問不存在挑戰,但是矩陣的計算量非常大。 基于以上分析,我們決定在GNN Core加速器設計中用兩種不同的硬件結構來處理聚合操作與合并操作,功能框圖如下圖所示:

圖7: GNN Core功能框圖 聚合器(Aggregator):通過SIMD(單指令多數據處理器)陣列來對Graph進行鄰居節點采樣并進行聚合操作。其中的“單指令”可以預定義為mean()均值計算,或者其他適用的聚合函數;“多數據”則表示單次mean()均值計算中需要多個鄰居節點的特征數據作為輸入,而這些數據來自于子圖采樣器(Subgraph Sampler);SIMD陣列通過調度器Agg Scheduler做負載均衡;子圖采樣器通過NoC從GDDR6或DDR4讀回的鄰接矩陣和節點特征數據h0v,分別緩存在Adjacent List Buffer和Node Feature Buffer之中;聚合的結果hkN(v)存儲在Agg Buffer之中。 合并器(Combinator):通過脈動矩陣PE來執行聚合結果的卷積操作;卷積核為Wk權重矩陣;卷積結果通過ReLU激活函數做非線性處理,同時也存儲在Partial Sum Buffer中以方便下一輪迭代。 合并的結果通過L2BN歸一化處理之后,即為最終的節點表征hkv。 在比較典型的節點分類預測應用中,該節點表征hkv可以通過一個全連接層(FC),以得到該節點的分類標簽。此過程屬于傳統的機器學習處理方法之一,沒有在GraphSAGE論文中體現,此設計中也沒有包含這個功能。6.結論本文深入討論了GraphSAGE GNN 算法的數學原理,并從多個維度分析了GNN加速器設計中的技術挑戰。作者通過分解問題并在架構層面逐一解決的方法,綜合運用Achronix Speedster7t1500 FPGA所提供的競爭優勢,創造了一個性能極佳且高度可擴展的GNN加速解決方案。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • FPGA
    +關注

    關注

    1629

    文章

    21729

    瀏覽量

    603013
  • 神經網絡
    +關注

    關注

    42

    文章

    4771

    瀏覽量

    100719
  • 機器學習
    +關注

    關注

    66

    文章

    8407

    瀏覽量

    132567

原文標題:機器學習實戰:GNN(圖神經網絡)加速器的FPGA解決方案

文章出處:【微信號:gh_9d70b445f494,微信公眾號:FPGA設計論壇】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    【「從算法到電路—數字芯片算法的電路實現」閱讀體驗】+內容簡介

    內容簡介這是一本深入解讀基礎算法及其電路設計,以打通算法研發到數字IC設計的實現屏障,以及指導芯片設計工程師從底層掌握復雜電路設計與優化方法為目標的專業技術書。任何芯片(如WiFi芯片、5G芯片
    發表于 11-21 17:14

    【「從算法到電路—數字芯片算法的電路實現」閱讀體驗】+介紹基礎硬件算法模塊

    數問題。因此,深入理解芯片所基于的算法是國產自主研發的關鍵。任何算法都是由加減四則運算、濾波器、特殊信號發生器等基本數學方法構成的,熟練掌握這些方法是實現
    發表于 11-21 17:05

    傅里葉變換的數學原理

    傅里葉變換的數學原理主要基于一種將函數分解為正弦和余弦函數(或復指數函數)的線性組合的思想。以下是對傅里葉變換數學原理的介紹: 一、基本原理 傅里葉級數 :對于周期性連續信號,可以將其表示為傅里葉
    的頭像 發表于 11-14 09:27 ?399次閱讀

    軟銀和阿波羅討論成立大型人工智能基金

    據最新報道,軟銀集團與阿波羅正在就成立一只大型基金進行深入討論,該基金將專注于投資數據中心、芯片工廠以及其他與人工智能相關的項目。據知情人士透露,雙方曾討論過設立一只規模超過200億美元的基金,旨在推動人工智能領域的進一步發展。
    的頭像 發表于 10-29 11:15 ?317次閱讀

    深入解析Zephyr RTOS的技術細節

    ,Zephyr OS在嵌入式開發中的知名度逐漸增加,新的微控制器和開發板都支持Zephyr。本文將深入討論Zephyr RTOS的技術細節。
    的頭像 發表于 10-22 16:47 ?498次閱讀
    <b class='flag-5'>深入</b>解析Zephyr RTOS的技術細節

    名單公布!【書籍評測活動NO.46】從算法到電路 | 數字芯片算法的電路實現

    :elecfans123)領取書籍進行評測,如在5個工作日內未聯系,視為放棄本次試用評測資格! 《從算法到電路——數字芯片算法的電路實現》 是一本深入解讀基礎算法及其電路設計,以打通
    發表于 10-09 13:43

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論
    發表于 09-18 15:14

    神經網絡反向傳播算法的原理、數學推導及實現步驟

    傳播算法的原理、數學推導、實現步驟以及在深度學習中的應用。 神經網絡概述 神經網絡是一種受人腦啟發的計算模型,由大量的神經元(或稱為節點)組成,每個神經元與其他神經元通過權重連接。神經網絡可以分為輸入層、隱藏層和輸出層。輸入層接收外部輸入數據
    的頭像 發表于 07-03 11:16 ?777次閱讀

    神經網絡在數學建模中的應用

    數學建模是一種利用數學方法和工具來描述和分析現實世界問題的過程。神經網絡是一種模擬人腦神經元結構和功能的計算模型,可以用于解決各種復雜問題。在數學建模中,神經網絡可以作為一種有效的工具,幫助我們更好
    的頭像 發表于 07-02 11:29 ?928次閱讀

    機器學習算法原理詳解

    機器學習作為人工智能的一個重要分支,其目標是通過讓計算機自動從數據中學習并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學習算法原理,包括線性回歸、邏輯回歸、支持向量機(SVM)、決策樹和K近鄰(KNN)算法,探
    的頭像 發表于 07-02 11:25 ?988次閱讀

    工業控制器的制作與數學的關系

    數學在工業控制器設計中的應用 工業控制器的設計涉及到多個方面,包括硬件設計、軟件設計、系統架構設計等。在這些設計過程中,數學發揮著關鍵作用。 1.1 硬件設計中的數學應用 工業控制器的硬件設計主要
    的頭像 發表于 06-16 14:34 ?511次閱讀

    夏普討論建立人工智能數據中心

    近日,夏普公司宣布與KDDI公司達成重要合作意向,雙方將針對建立人工智能數據中心進行深入討論。據悉,此次合作將圍繞英偉達的人工智能計算平臺和Supermicro平臺展開,共同探索人工智能領域的創新發展。
    的頭像 發表于 06-05 09:17 ?462次閱讀

    PID在工業控制領域的實現原理

    PID控制器非常實用且有效。它們基于簡單的數學原理,通過調整三個參數(比例系數P、積分系數I和微分系數D)來對系統的偏差進行控制。這種簡單性使得PID控制器易于理解和實現,同時也能夠提供穩定且可靠的控制效果。
    發表于 04-12 11:06 ?773次閱讀
    PID在工業控制領域的實現原理

    請問有人用過瑞芯微自定義3A算法模塊嗎

    目前也研究了好一陣了,想請教一下如何開發自己的3A算法庫或者別的圖像處理算法庫。想和各位討論一下
    發表于 01-25 10:15

    深入理解FFmpeg閱讀體驗》+ 書收到了,嶄新的開篇

    今天收到了《深入理解FFmpeg》 嶄新的書,一個在2022年較近距離接觸過卻尚未深入研究的領域圖像處理。最近剛好在作這方面的研究,希望自己可以把握這次機會,好好學習下 FFMpeg,相信可以讓自己
    發表于 01-07 18:57
    主站蜘蛛池模板: 轻点灬大ji巴太粗太双性高h| 国产亚洲人成在线视频| 狠狠色综合久久丁香婷婷| 欧美精品一区二区在线电影| 亚洲精品AV无码永久无码| 菠萝菠萝蜜在线观看视频| 久久久久久88色偷偷| 吸奶舔下面| www精品一区二区三区四区| 久久国产高清视频| 天天摸夜添狠狠添高| 97色在线视频| 交换邻居波多野结衣中文字幕| 射死你天天日| FREE性丰满白嫩白嫩的HD| 久久久午夜精品福利内容| 玄幻全黄h全肉后宫| 国产成人a视频在线观看| 欧美成人无码A区在线观看免费| 在线观看日本免费| 国产综合18久久久久久软件| 十九禁啊啪射视频在线观看| caoporon超碰在线视频| 龙腾亚洲人成电影网站| 曰本aaaaa毛片午夜网站| 好男人好资源在线观看免费视频| 天天影视色欲 影视| 动漫美女被爆挤奶歪歪漫画| 欧美18videosex性欧美老师| 18禁在线无遮挡羞羞漫画| 精品国产福利一区二区在线| 亚洲成人免费看| 国产精品一区二区亚瑟不卡| 少妇精品久久久一区二区三区| a级毛片高清免费视频| 蜜臀AV人妻久久无码精品麻豆| 在线观看免费视频a| 久久久久999| 中文字幕99香蕉在线| 久久性综合亚洲精品电影网| 伊人成综合网伊人222|