色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

用ElasticDL和社區Keras模型庫實現大量小眾預估場景

Tensorflowers ? 來源:TensorFlow ? 作者:TensorFlow ? 2020-11-19 09:21 ? 次閱讀

在互聯網行業里有很多需要利用深度學習模型預估點擊率的場景,比如廣告系統、推薦系統,和搜索引擎。有些重要的場景背后是很大的用戶流量,體驗了重要的商業價值,所以有數十人甚至數百人的團隊在不斷優化預估效能。這些團隊為了優化自己負責的場景甚至專門研發深度學習工具鏈。

同時,大量小眾的預估場景對應著不小的流量,但是無法配置專門的團隊,更不可能開發專門的工具。這類場景因為數量眾多,所以總體商業價值毫不弱于上述主流場景,甚至符合長尾分布的 20/80 比例 —— 其總體商業價值數倍于主流場景。

在我們研發和推廣 ElasticDL 的過程里,接觸到了很多負責此類小眾場景的用戶們。比如螞蟻集團的各種大促活動,以及餓了么和菜鳥等業務的營銷推薦活動。這些業務場景中,通常是一個算法工程師需要負責多個場景的建模。這就帶來一個重要需求 —— 提供一套通用工具以提高大量小眾預估場景下算法工程師的建模效率。另外,小眾場景里的訓練數據可不小 —— 本文梳理的場景都需要分布式訓練。

之前的文章《ElasticDL:同時提升集群利用率和研發效率的分布式深度學習框架》里我們介紹過 ElasticDL 通過 Kubernetes-native 的彈性調度能力,提升機群資源利用率到 >90%。同時,作為一個 Keras 模型的分布式訓練系統,ElasticDL 只需要用戶提供模型定義,不需要用戶定義訓練循環 (training loop),更不需要用戶開發分布式訓練循環。實際上,由于 TensorFlow 社區貢獻了很多 Keras 模型,比如 tf.keras.applications 里有很多 CV 領域的模型,DeepCTR 庫里有很多 CTR 預估相關的模型,用戶可以直接使用的。所以實際上 ElasticDL 在小眾場景中的使用可以完全不需要用戶 coding。這樣的易用性在推廣過程中得到了用戶的好評。

tf.keras.applications
https://tensorflow.google.cn/api_docs/python/tf/keras/applications?hl=zh-cn

DeepCTR
https://github.com/shenweichen/DeepCTR

基于 no-code 的特點,ElasticDL 團隊的主力工程師王勤龍為螞蟻的可視化建模平臺 PAI 增加了 ElasticDL 組件,使得大量用戶可以通過在 Web 頁面里拖拽和配置組件的方式實現 AI 訓練。此文基于螞蟻、餓了么、和飛豬的同事們的反饋梳理,為大家解釋 TensorFlow 社區累積的 Keras 模型對中小 AI 場景的價值,以及如何經由 ElasticDL 實現這些價值。

小眾預估場景對模型研發效率的期待

小眾預估場景具有如下特點:

應用周期短,可能是應用在某個短時間的大促營銷活動。所以算法工程師也需要在短時間內能完成預估模型的開發。

業務場景復雜多樣,比如商品推薦的點擊預估、營銷活動的目標人群預估、優惠券的核銷預估等,一個算法工程有可能會同時負責不同場景的預估建模,不同場景所使用的特征和模型可能區別很大,所說提高小眾場景的預估模型的開發效率十分重要。

樣本數據量大。雖然是小眾場景,但是在大數據時代,公司都會積累了很多歷史樣本數據。訓練的數據越多,有助于提升預估模型精度。所以在分布式集群上加速預估模型的訓練對生產應用十分重要。

小眾預估場景的這些特點不僅需要提高建模效率,也給集群管理系統帶來了挑戰。由于此類場景數量眾多,在集群上給每個場景單獨劃分資源是不切合實際的。同時小眾場景的訓練作業時多時少,給其調度資源時既要考慮是否滿足訓練任務的需求,也要考慮集群資源利用率。前者決定了用戶的模型訓練效率,后者決定了公司成本。

使用 Keras 提高預估模型編程效率

使用 ElasticDL 來做分布式訓練,用戶主要需要使用 Keras API 來定義一個 Keras Model,如下所示:

import tensorflow as tf def forward(): inputs = tf.keras.layers.Input(shape=(4, 1), name="input") x = tf.keras.layers.Flatten()(inputs) outputs = tf.keras.layers.Dense(3, name="output")(x) return tf.keras.Model(inputs=inputs, outputs=outputs, name="simple-model")

深度學習預估模型一般包含兩個部分:

樣本特征預處理定義。將原始特征數據轉換成適合深度學習使用的數據,比如標準化、分箱等變換。

深度學習網絡結構定義。定義網絡結構來擬合數據分布,提供模型預估精度。

在特征預處理上,TensorFlow 在其最新版本中提供了很多 preprocessing layers 來方便用戶做特征預處理。使用這些 preprocessing layer,用戶可以很方便地將特征預處理計算邏輯與模型網絡結構結合在一起構造一個完整的 Keras 模型。

preprocessing layers
https://keras.io/api/layers/preprocessing_layers/

但是很多預估場景的特征數量很大,可能涉及用戶屬性、商品屬性、地理位置等特征。對每個特征都手動編程定義預處理邏輯,也是件繁瑣的事。同時特征預處理定義還需要一些樣本特征的統計信息來保證特征變換的準確性,比如標準化操作需要特征的均值和標準差,分箱需要特征值的分布信息來確定分箱邊界。在阿里巴巴集團,大多數預估場景的數據都是以結構化表形式存儲在阿里云的 MaxCompute 中。針對此類數據,我們結合 MaxCompute 的大數據計算能力開發了自動生成預處理 Layer 功能。用戶只需要選擇使用的特征列,就可以自動完成特征統計并根據統計結果生成預處理的 Layer,用戶只需關心模型的深度學習網絡結構的定義。

在預估模型的網絡結構定義上,DeepCTR模型庫提供了很多前沿的 CTR 預估模型。用戶可以很方便地調用這些模型來構造自己的預估模型。針對常用的 CTR 深度學習預估模型,我們在螞蟻集團的 PAI 平臺上封裝了一個 ElasticDL-DeepCTR 組件,該組件能根據數據集自動生成特征預處理邏輯,并預置了 Wide&Deep、DeepFM、xDeepFM等算法,用戶只需配置參數即可進行分布式模型訓練。

彈性調度提升訓練效率

小眾預估場景所使用的樣本數量一般也很大,幾百萬到幾千萬條不等,單機訓練很慢滿足模型的訓練效率,往往需要在分布式集群上來加速模型訓練。因為小眾預估場景的數量多,單獨給每個場景劃分資源訓練模型無疑會大幅增加集群管理員的工作。但是資源劃分少會影響訓練速度,劃分過多則可能造成資源浪費。所以通常的做法是,這些小眾預估場景的模型訓練共享一個資源池。但是共享一個資源池很難同時兼顧用戶體驗和集群資源利用率。小眾預估場景的模型訓練作業往往時多時少。作業少的時候,資源池空閑造成資源浪費;作業多的時候,后面提交的任務需要排隊等待。

ElasticDL 的彈性訓練則能很好地解決了這個問題。通常一個 Kubernetes 集群上的資源是多個租戶共用的,這些租戶可能運行著各種不同的計算任務,比如在線服務任務、數據計算任務等。為了保證不同租戶的 Service-Level Objective (SLO),集群管理者會給各租戶分配資源配額。每個租戶有高優先級使用自己的資源配額來執行計算任務,如果配置內的資源有空閑,其他租戶則能用低優先級使用該租戶配額里空閑的資源。如果使用過程中,原有租戶計算任務增加,則其他租戶需要歸還使用的資源。由于集群中不同租戶的使用峰值和低谷一般是錯開的,所以集群中經常存在空閑資源。模型訓練的租戶使用 ElasticDL 則能以低優先級方式借調其他組租戶的空閑資源來訓練模型。就算訓練過程中 ElasticDL 作業的 worker 被原有租戶搶占了,訓練作業不會終止失敗。ElasticDL 會在集群里尋找其他租戶的空閑資源來啟動新的 worker,并將新 worker 加入訓練作業。

在螞蟻集團,幾十個租戶同時使用一個 Kubernetes 集群,我們在集群上只劃分了很少的資源來啟動 ElasticDL 作業的 master 和 PS 進程,而資源需求大且數量多的 worker 進程則全部使用低優先級的資源來運行。這樣只要集群有空閑資源,訓練作業就能快速開始,從而提升了這些小眾預估模型的訓練效率,也同時提升了集群資源利用率。

應用案例

以下我們簡述幾個阿里經濟體內使用 ElasticDL 提升模型研發效能的小眾場景。

螞蟻財富的理財活動推薦

支付寶 818 金選理財節活動,新發基金策略(用于某債基帶貨)和黃金雨活動策略(用于促活躍)需要使用 CTR 預估來提升活動效果。該場景積累了幾百萬樣本數據,且樣本中包含用戶屬性、理財產品屬性等很多特征。使用 ElasticDL 預估方案,非常方便地將 DeepFM 使用到了此次活動中。相比之前使用的規則策略,活動期間,頁面的點擊率有明顯提升。

餓了么補貼投放預估

餓了么 C 端補貼(天降紅包/高溫補貼券包項目)是通過對用戶發放紅包以撬動用戶下單的目的進行發放的,因此在不同門檻/面額組合下對用戶核銷/下單概率的預估是將平臺收益最大化(ROI 最大化)的必要條件。類似邏輯同樣適用在 B 端補貼上(百億補貼項目),只不過 B 端補貼需要疊加用戶對門店屬性的適應/偏好/LBS限制/物流限制等更復雜的情況。ElasticDL 提供的 CTR 預估方案非常簡單易用,訓練的 xDeepFM 模型上線后效果很好。為后續的核銷率擬合/ROI 優化提供了堅實有力的基礎。

小結

針對 Keras 模型,ElasticDL 利用 TensorFlow 的 Eager execution 在 Kubernetes 上實現了彈性分布式訓練,讓用戶只需提供 Keras 模型定義就可以提交分布式訓練作業。同時由于 TensorFlow 社區擁有豐富的 Keras 模型庫,用戶可以做到 no-code 就能完成一個預估模型的應用。

由于 ElasticDL 在阿里經濟體內部的展示的應用價值,ElasticDL 的另一位主力工程師齊俊在配合阿里云團隊,爭取盡快讓阿里經濟體之外的用戶可以在阿里云上使用 ElasticDL。這項對接工作結束之后,我們再為大家帶來更新。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 模型
    +關注

    關注

    1

    文章

    3254

    瀏覽量

    48895
  • 大數據
    +關注

    關注

    64

    文章

    8894

    瀏覽量

    137497
  • 深度學習
    +關注

    關注

    73

    文章

    5504

    瀏覽量

    121246

原文標題:案例分享 | No-Code AI:用 ElasticDL 和社區 Keras 模型庫實現大量小眾預估場景

文章出處:【微信號:tensorflowers,微信公眾號:Tensorflowers】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    KerasHub統一、全面的預訓練模型庫

    深度學習領域正在迅速發展,在處理各種類型的任務中,預訓練模型變得越來越重要。Keras 以其用戶友好型 API 和對易用性的重視而聞名,始終處于這一動向的前沿。Keras 擁有專用的內容
    的頭像 發表于 12-20 10:32 ?109次閱讀

    開源AI模型庫是干嘛的

    開源AI模型庫是指那些公開源代碼、允許自由訪問和使用的AI模型集合。這些模型通常經過訓練,能夠執行特定的任務。以下,是對開源AI模型庫的詳細介紹,由AI部落小編整理。
    的頭像 發表于 12-14 10:33 ?198次閱讀

    如何使用Python構建LSTM神經網絡模型

    構建一個LSTM(長短期記憶)神經網絡模型是一個涉及多個步驟的過程。以下是使用Python和Keras構建LSTM模型的指南。 1. 安裝必要的
    的頭像 發表于 11-13 10:10 ?415次閱讀

    TNIA-TI做全差分THS4121芯片瞬態仿真時,輸入Vin+和Vin-存在共模震蕩的原因?

    ,詳細仿真情況,請查看附件,THS4121 TINA-TI仿真模型庫是從TI官網上下載的,現懷疑芯片震蕩是否真的存在,還是芯片仿真模型庫有問題?
    發表于 08-20 08:00

    AI算法/模型/框架/模型庫的含義、區別與聯系

    在人工智能(Artificial Intelligence,簡稱AI)的廣闊領域中,算法、模型、框架和模型庫是構成其技術生態的重要基石。它們各自承擔著不同的角色,但又緊密相連,共同推動著AI技術的不斷發展。以下是對這四者含義、區別與聯系的詳細闡述。
    的頭像 發表于 07-17 17:11 ?4064次閱讀

    深度學習模型有哪些應用場景

    深度學習模型作為人工智能領域的重要分支,已經在多個應用場景中展現出其巨大的潛力和價值。這些應用不僅改變了我們的日常生活,還推動了科技進步和產業升級。以下將詳細探討深度學習模型的20個主要應用
    的頭像 發表于 07-16 18:25 ?2014次閱讀

    keras模型轉tensorflow session

    在這篇文章中,我們將討論如何將Keras模型轉換為TensorFlow session。 Keras和TensorFlow簡介 Keras是一個高級神經網絡API,它提供了一種簡單、快
    的頭像 發表于 07-05 09:36 ?555次閱讀

    keras的模塊結構介紹

    Keras是一個高級深度學習,它提供了一個易于使用的接口來構建和訓練深度學習模型Keras是基于TensorFlow、Theano或CNTK等底層計算
    的頭像 發表于 07-05 09:35 ?382次閱讀

    如何使用Tensorflow保存或加載模型

    TensorFlow是一個廣泛使用的開源機器學習,它提供了豐富的API來構建和訓練各種深度學習模型。在模型訓練完成后,保存模型以便將來使用或部署是一項常見的需求。同樣,加載已保存的
    的頭像 發表于 07-04 13:07 ?1579次閱讀

    導入keras或者onnx模型到cubeai進行分析,為什么會報錯?

    請問我導入keras或者onnx模型到cubeai進行分析,為什么會報錯,而且沒有報錯內容,cubeai版本9.0.0。換成8.1.0版本后報錯內容是invalid network。該怎么入手解決。
    發表于 07-03 07:55

    基于stm32h743IIK在cubeai上部署keras模型模型輸出結果都是同一組概率數組,為什么?

    基于stm32h743IIK,在cubeai上部署keras模型模型輸出結果都是同一組概率數組,一點也搞不明白,看社區也有相同的問題,但沒有解決方案
    發表于 05-20 08:18

    鴻蒙OS開發學習:【第三方調用】

    在Stage模型中,如何調用已經上架到[三方中心]的社區和項目內創建的本地
    的頭像 發表于 04-14 11:34 ?925次閱讀
    鴻蒙OS開發學習:【第三方<b class='flag-5'>庫</b>調用】

    cube AI導入Keras模型出錯怎么解決?

    我嘗試過cube AI的version7.1.0、6.0.0、5.1.2、4.1.0,導入Keras都是這個報錯,求解答 E010(InvalidModelError): Couldn&
    發表于 03-18 06:39

    全志V851s做了一個魔法棒,使用Keras訓練手勢識別模型控制一切電子設備

    功能是如何做到的。 1、軟件構成 使用Keras訓練手勢識別模型,轉為 TFlite 模型。 再通過谷歌提供的 TFlite C API 運行模型。 2、代碼倉庫 代碼倉庫順序如下:
    發表于 02-04 10:44

    基于TensorFlow和Keras的圖像識別

    ,讓我們先花點時間來了解一些術語。TensorFlow/KerasTensorFlow是GoogleBrain團隊創建的一個Python開源,它包含許多算法和模型
    的頭像 發表于 01-13 08:27 ?840次閱讀
    基于TensorFlow和<b class='flag-5'>Keras</b>的圖像識別
    主站蜘蛛池模板: 国内2018年午夜福利5678| 精品国产乱码久久久久久免费流畅 | 99热久久这里只精品国产WWW| 秋霞伦理电影在线看| 女子初尝黑人巨嗷嗷叫| 最近的2019中文字幕国语| 伦理 电影在线观看| 日本wwwxx爽69护士| 日本中文字幕巨大的乳专区| 本庄优花aⅴ全部在线影片 | 午夜想想爱午夜剧场| 国产高清美女一级a毛片久久w| 无码国产精品高潮久久9| 亚洲日本一区二区三区在线不卡| AV多人爱爱XXx| 日本免费无码A专区在线观看| 国产成人精品自线拍| 亚洲 欧美 国产 在线 日韩| 最新黄色在线| 全身无赤裸裸美女网站| 放射源分类办法| 无人区国产片| 久草大| 99久久亚洲综合精品| 日韩a视频在线观看| 国产欧美亚洲综合第一页| 97精品国产亚洲AV超碰| 亚洲福利电影一区二区?| 破苞流血哭泣 magnet| 精品美女国产互换人妻 | 成人无码在线视频区| 伊人久久大香| 熟女人妻久久精品AV天堂| 男男h啪肉np文总受| 国产一区精选播放022| 成片免费观看视频在线网| 一久久| 亚洲国产精品综合久久一线| 秋霞电影网伦大理电影在线观看| 精品国产手机视频在在线| 国产传媒精品1区2区3区|