可穿戴設備應用中的顯示屏消耗了大部分電池電力。解決方法之一是直接提高電池容量,但是大容量電池會加大尺寸和重量,對可穿戴設備不合適,尤其是在市場不斷追求更小型化的新款產品時更是如此。更具挑戰性的是電池技術的發展跟不上日益增長的系統需求……
在可穿戴設備中電池使用壽命對于良好的用戶體驗至關重要。可穿戴設備應用中的顯示屏消耗了大部分電池電力。解決方法之一是直接提高電池容量,但是大容量電池會加大尺寸和重量,對可穿戴設備不合適,尤其是在市場不斷追求更小型化的新款產品時更是如此。更具挑戰性的是,電池技術的發展跟不上日益增長的系統需求。因此最大限度降低顯示屏功耗成為可穿戴設備市場的關鍵設計因素。
人類的視覺感知非常精確,推動了制造商在可穿戴設備中使用更高分辨率的顯示屏。雖然有多種節能方案可供使用,但任何視覺質量下降都會直接影響設備的整體體驗。因此在為顯示屏考慮節能方案時必須謹慎小心。要想提高顯示器分辨率就需要提高存儲器帶寬,因此為了延長電池使用壽命,降低存儲器在待機模式和工作模式下的功耗變得更有實際意義。
顯示系統架構
顯示屏由像素陣列構成。每個像素的驅動值決定顯示的顏色。基于ram的幀緩存保存了顯示屏上每個像素的顏色信息。大部分常用的并行顯示屏需要周期刷新,從幀緩存讀取數據,然后在屏上顯示。如果顯示屏的分辨率和色彩深度不高,控制器的內部RAM也可以用作幀緩存。
隨著顯示屏尺寸增大,分辨率和色彩深度提高,內部SRAM將無法提供足夠的容量或性能。為了避免畫面撕裂,也有必要采用雙緩存。在這些系統中通常在外部存儲器中實現幀緩存。在刷新周期中,從外部幀緩存讀取數據,并連同控制信號輸出給顯示控制器數據總線。圖1所示的是采用外部幀緩存的典型顯示框圖。
圖1:并行SRAM顯示緩存實現方案(來源:賽普拉斯)
有多種方法能夠降低顯示器功耗。
將顯示控制器集成到主微控制器內部。市場上常見的顯示器模塊都有內置控制器。完成上述集成后,有助于充分利用主微控制器的低功耗特性。
使用低功耗存儲器作為幀緩存。因為幀緩存始終處于開啟狀態,所以應采用待機電流低的存儲器。
減少對幀緩存的頻繁更新。使用容量足夠大的存儲器并加載多個幀可降低CPU工作電流。如果將最經常訪問的幀加載到存儲器中,就無需從幀緩存加載和卸載數據。將幀緩存切換到不同的存儲器地址就能切換顯示器上顯示的圖像。
我們一直將并行異步SRAM用作外部顯示緩存,因為控制器和顯示器能夠輕松地為他們提供支持。然而這種類型的存儲器封裝尺寸大、引腳數量多。而串行存儲器引腳數量少、封裝尺寸小,可以減少所需的控制器引腳數,節省PCB成本。在以Quad SPI模式工作在108MHz下時,串行存儲器的性能可與并行異步SRAM存儲器媲美。例如賽普拉斯Excelon F-RAM就是一款最大密度高達8Mbit,并采用低引腳數小型GQFN封裝的串行非易失性存儲器。為了優化功耗可支持四種功耗模式。在典型的Quad SPI模式下以108MHz運行時,工作電流為16mA。當存儲器不工作時,待機模式耗電102μA。深度待機模式可進一步將耗電降至0.8μA,休眠模式下只需要0.1μA的最低耗電。
編輯:hfy
-
顯示器
+關注
關注
21文章
4987瀏覽量
140125 -
電池技術
+關注
關注
12文章
906瀏覽量
49328 -
存儲器
+關注
關注
38文章
7514瀏覽量
164000 -
cpu
+關注
關注
68文章
10879瀏覽量
212195 -
可穿戴設備
+關注
關注
55文章
3817瀏覽量
167122
發布評論請先 登錄
相關推薦
評論