色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何通過柵極驅動技術實現SiC性能的最大化

電子設計 ? 來源: 電子工程世界 ? 作者: 電子工程世界 ? 2021-02-20 15:18 ? 次閱讀

電動汽車革命即將來臨。汽車公司拼命地尋求技術優勢,驅動電動汽車的電力電子設備正在迅速發展。諸如碳化硅(SiC)之類的寬禁帶FET技術有望顯著提高效率,減輕系統重量并減小電池體積。在汽車設計中,SiC兌現了這些承諾,并推動了下一代電動汽車的創新。

SiC和其他寬禁帶器件的基本優勢源于它們的帶隙,價帶頂部和導帶底部之間的能量差。電子從低能價帶移動到高能導帶使材料導電。將電子從價帶移動到導帶需要1.1 eV。另一方面,SiC具有3.2 eV的帶隙,因此將電子移動到SiC導帶需要更多的能量。對于給定的芯片尺寸,這意味著比硅器件更高的擊穿電壓。實際上,SiC芯片的優勢更像是為電動汽車量身定制的,例如尺寸更小、更低的導通電阻(RDSON)和更快的開關速度等。

電動汽車的三個主要限制是充電時間,續航里程和成本。將逆變器電路的高壓部分(稱為DC鏈路)升壓至800 V或至1,000 V可以降低電流,從而使電纜和磁性件的重量更輕。更高的電壓要求開關器件具有更高的擊穿電壓,通常高達1200V。對于標準的硅MOSFET,將擊穿電壓縮放到該水平并保持高電流是不切實際的,因為必需的管芯尺寸變得更大。雙極硅器件(主要是絕緣雙極柵晶體管(IGBT))可以解決此問題,但會犧牲開關速度并限制功率轉換效率。SiC的寬帶隙允許單極FET器件(具有顯著較小的裸片尺寸)表現出與傳統IGBT相同的擊穿電壓和額定電流。此特性為電源轉換系統帶來了數項改進,同時允許更高的直流母線電壓并減輕了車輛的重量。

為了提高電動汽車的續航里程,要么必須增加電池容量,要么必須提高車輛的效率。通常,提高電池容量會增加成本,尺寸和重量,因此設計人員將精力集中在提高車輛電源轉換系統的效率上。使用正確的開關設備,設計人員可以提高電源開關頻率,以提高效率,同時減小磁性元件的尺寸,從而降低成本和重量。此外,高效轉換器需要更少的散熱和冷卻系統。

SiC FET自然會適應這些高開關頻率,因為它們在每個充電/放電周期中消耗的能量很少。此外,SiC的材料特性與較小的裸片尺寸相結合,可以在較高溫度下運行,而損耗比IGBT低。

o4YBAGAwt2KAZcqHAAHBnfjUc4I558.png

Cree Wolfspeed E3M0065090D汽車SiC FET的RDSON如何隨溫度變化

與IGBT不同,SiC FET具有RDSON規范,并且額定RDSON隨溫度變化很小。該概念對于大功率電動汽車應用至關重要,在這些應用中,開關設備可處理千瓦的功率并經常達到高溫。此外,IGBT通常針對最大電流進行了優化。在小于最大負載時,它們的傳導損耗急劇增加。但是,SiC FET在低負載下仍保持其效率。這種行為在汽車中尤其有用,在汽車中,諸如牽引逆變器之類的系統會長期在不同的負載下運行。

SiC FET的所有這些改進共同帶來了更高的效率,更小的電池,更低的成本,從而設計出更強大的電動汽車。但是,采用SiC技術要求設計人員學習新技術,并且一些最重要的技術都集中在柵極驅動器上。

具有較小芯片尺寸和較高開關頻率的SiC FET需要略微不同的柵極驅動技術。較小的裸片尺寸使SiC FET更容易受到損壞,而較高的頻率則需要具有更高性能的柵極驅動器。最后,SiC FET在截止狀態下通常需要較高的柵極驅動信號和負柵極電壓。最新的隔離式柵極驅動器集成了滿足所有這些要求所需的功能。

許多高壓汽車系統使用隔離設備(例如隔離的柵極驅動器)將低壓控制器與系統的高壓部分分開。大多數SiC FET設計中使用的高開關頻率會使隔離的柵極驅動器遭受快速瞬變的影響。具有至少100 kV / μsec的共模瞬變抗擾度(CMTI)的柵極驅動器可以承受這些瞬變。此外,驅動器的傳播延遲和通道間偏斜通常必須低于10 ns,才能使設計在如此高速下保持穩定。隨著汽車系統將直流鏈路電壓提高,隔離式柵極驅動器還必須具有足夠的最大絕緣工作電壓(VIORM)。由于技術的進步,設計人員可以簡單地選擇滿足SiC FET系統需求的隔離式柵極驅動器。

許多新的隔離式柵極驅動器,例如Silicon Labs Si828x,還包括集成的Miller鉗位和去飽和檢測,以保護SiC器件。在半橋或全橋配置中,橋下半部分的開關器件在上部器件導通時,漏極上的電壓會快速變化。這種變化會在柵極中感應出電流,以耗盡寄生電容,否則該寄生電容會通過柵極放電并導通下部器件。這種“米勒寄生開啟”會導致擊穿現象,這將迅速損壞SiC器件。

pIYBAGAwt3eAaZnJAADWHM6oAw0682.png

Silicon Labs Si828x隔離式柵極驅動器上的集成米勒鉗位。

當集成的米勒鉗位達到預設閾值時,它會形成柵極到漏極的寄生電容。此外,異常負載情況可能導致開關設備跌落到飽和狀態并受損。但是,Silicon Labs Si828x柵極驅動器中集成了一個去飽和電路。如果開關設備上的電壓上升到配置的閾值以上,則柵極驅動器會迅速做出響應并正常關閉它。它使用軟關斷電路來限制開關設備上的感應關斷電壓。

對于SiC FET,保護電路必須快速反應(通常在1.8微秒以下)才能生效。通過將這三個功能集成到柵極驅動器中,設計魯棒,可靠的SiC功率轉換器會變得簡單。

pIYBAGAwt4qALkOzAACZDQKAoFQ980.png

Silicon Labs Si828x隔離式柵極驅動器上的集成去飽和電路。

驅動SiC FET的最后一個方面是在關閉FET時使用負電壓。負電壓與米勒鉗位一起工作,以確保FET處于截止狀態,這是控制高頻功率轉換器中的直通電流的至關重要的一個方面。產生必要的負電壓軌的方法超出了本文的范圍。但是,選擇帶有集成DC/DC轉換器的柵極驅動器通常會簡化設計。

總而言之,SiC開關提供前所未有的更快開關速度,更高效率和更高功率密度。此外,高擊穿電壓和熱特性是電動汽車動力系統的基礎需求。這些優勢,加上隔離式柵極驅動器的改進功能,使其成為電氣化革命中的核心技術。
編輯:hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電動汽車
    +關注

    關注

    156

    文章

    12112

    瀏覽量

    231535
  • IGBT
    +關注

    關注

    1267

    文章

    3801

    瀏覽量

    249282
  • 電源開關
    +關注

    關注

    12

    文章

    1034

    瀏覽量

    44632
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2837

    瀏覽量

    62710
  • 汽車設計
    +關注

    關注

    1

    文章

    26

    瀏覽量

    10219
收藏 人收藏

    評論

    相關推薦

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為高功率、高頻應用中的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對器件的整體性能和使用壽命
    發表于 01-04 12:37

    光伏發電如何實現能效最大化

    光伏發電實現能效最大化是一個綜合性的問題,需要從多個方面入手。以下是一些關鍵措施: 一、選用優質設備 太陽能板 :選用具有高光電轉化效率和穩定性的太陽能板是基礎。例如,單晶硅太陽能板通常比多
    的頭像 發表于 12-05 11:06 ?296次閱讀

    一文詳解SiC柵極絕緣層加工工藝

    柵極氧化層可靠性是SiC器件應用的一個關注點。本節介紹SiC柵極絕緣層加工工藝,重點介紹其與Si的不同之處。
    的頭像 發表于 11-20 17:38 ?440次閱讀
    一文詳解<b class='flag-5'>SiC</b><b class='flag-5'>柵極</b>絕緣層加工工藝

    電隔離柵極驅動器的隔離能力評估

    電隔離式 (GI) 柵極驅動器在優化碳化硅 (SiC) MOSFET性能方面扮演著至關重要的角色,特別是在應對電氣化系統日益增長的需求時。隨著全球對電力在工業、交通和消費產品中依賴性的
    的頭像 發表于 11-11 17:16 ?400次閱讀
    電隔離<b class='flag-5'>柵極</b><b class='flag-5'>驅動</b>器的隔離能力評估

    電隔離柵極驅動器選型指南

    電隔離式(GI)柵極驅動器在優化碳化硅(SiC)MOSFET性能方面扮演著至關重要的角色,特別是在應對電氣化系統日益增長的需求時。隨著全球對電力在工業、交通和消費產品中依賴性的加深,
    的頭像 發表于 11-11 17:12 ?418次閱讀

    液冷充電槍線最大化提高充電效率

    法法易提供的液冷充電槍線可以最大化的提升充電效率,讓大家的充電時間進一步縮短。? 液冷充電槍線使用液體循環來冷卻電纜,以避免因高溫而導致電纜損壞或充電速度減緩。而且液冷充電槍線采用銅芯導線和耐高溫、耐磨損、
    的頭像 發表于 09-11 14:25 ?407次閱讀

    使用隔離式 IGBT 和 SiC 柵極驅動器的 HEV/EV 牽引逆變器設計指南

    電子發燒友網站提供《使用隔離式 IGBT 和 SiC 柵極驅動器的 HEV/EV 牽引逆變器設計指南.pdf》資料免費下載
    發表于 09-11 14:21 ?0次下載
    使用隔離式 IGBT 和 <b class='flag-5'>SiC</b> <b class='flag-5'>柵極</b><b class='flag-5'>驅動</b>器的 HEV/EV 牽引逆變器設計指南

    如何通過創新封裝技術提升功率器件性能

    由于對提高功率密度的需求,功率器件、封裝和冷卻技術面臨獨特的挑戰。在功率轉換過程中,高溫和溫度波動限制了設備的最大功率能力、系統性能和可靠性。本文將總結兩種不同的技術,以
    的頭像 發表于 09-03 10:37 ?410次閱讀
    如何<b class='flag-5'>通過</b>創新封裝<b class='flag-5'>技術</b>提升功率器件<b class='flag-5'>性能</b>

    碳化硅柵極驅動器的選擇標準

    利用集成負偏壓來關斷柵極驅動在設計電動汽車、不間斷電源、工業驅動器和泵等高功率應用時,系統工程師更傾向于選擇碳化硅 (SiC) MOSFET,因為與 IGBT 相比,
    的頭像 發表于 08-20 16:19 ?397次閱讀
    碳化硅<b class='flag-5'>柵極</b><b class='flag-5'>驅動</b>器的選擇標準

    使用SiC技術應對能源基礎設施的挑戰

    本文簡要回顧了與經典的硅 (Si) 方案相比,SiC技術是如何提高效率和可靠性并降低成本的。然后在介紹 onsemi 的幾個實際案例之前,先探討了 SiC 的封裝和系統集成選項,并展示了設計人員該如何最好地應用它們來優化
    的頭像 發表于 07-25 09:36 ?377次閱讀
    使用<b class='flag-5'>SiC</b><b class='flag-5'>技術</b>應對能源基礎設施的挑戰

    利用AgileSwitch? Augmented Switching? 柵極驅動器對SiC功率模塊進行表征

    的AgileSwitch系列柵極驅動器已獲得專利,該系列產品通過在關斷期間將柵極電壓值和停留時間調整為一個或多個中間值來控制關斷 di/dt,從而解決了這些問題。這個過程通常稱為 A
    的頭像 發表于 07-17 09:30 ?3264次閱讀
    利用AgileSwitch? Augmented Switching? <b class='flag-5'>柵極</b><b class='flag-5'>驅動</b>器對<b class='flag-5'>SiC</b>功率模塊進行表征

    PMP30934.1-IGBT 和 SiC 柵極驅動輔助 PSU PCB layout 設計

    電子發燒友網站提供《PMP30934.1-IGBT 和 SiC 柵極驅動輔助 PSU PCB layout 設計.pdf》資料免費下載
    發表于 05-23 14:29 ?0次下載
    PMP30934.1-IGBT 和 <b class='flag-5'>SiC</b> <b class='flag-5'>柵極</b><b class='flag-5'>驅動</b>輔助 PSU  PCB layout 設計

    Littelfuse發布IX4352NE低側SiC MOSFET和IGBT柵極驅動

    近日,Littelfuse公司發布了IX4352NE低側SiC MOSFET和IGBT柵極驅動器,這款新型驅動器在業界引起了廣泛關注。
    的頭像 發表于 05-23 11:34 ?757次閱讀

    Littelfuse宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動

    Littelfuse宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動器。這款創新的驅動器專門設計用于驅動工業應用中的碳化硅
    的頭像 發表于 05-23 11:26 ?817次閱讀

    碳化硅模塊(SiC模塊/MODULE)大電流下的驅動器研究

    與保護問題,設計了一款驅動器。采用高可靠性、高抗擾性能的電源及驅動芯片設計驅動電路,增加共模電感提高驅動電路抗擾
    發表于 05-14 09:57
    主站蜘蛛池模板: 双性大乳浪受噗呲噗呲h总| 国产亚洲欧洲日韩在线观看| 日本毛片久久国产精品| 国产嫩草影院精品免费网址| 99re久久热最新地址一| 小黄鸭YELLOWDUCK7596| 嫩小性性性xxxxbbbb| 后式大肥臀国产在线| 大胸美女裸身色诱网站| 6080伦理久久亚洲精品| 亚洲精品高清AV在线播放| 三叶草成人| 欧美最猛性XXXXX肛交| 久久久久久久网站| 国产色综合色产在线视频| YELLOW视频在线观看最新| 中文字幕一区中文亚洲| 亚洲va精品中文字幕| 双性h浪荡受bl| 日日夜夜天天操| 欧美内射AAAAAAXXXXX| 久久亚洲AV成人无码动态图| 好硬好湿好大再深一点动态图| 国产成人拍精品免费视频爱情岛| 爱穿丝袜的麻麻3d漫画免费| 97精品一区二区视频在线观看| 中文字幕1| 一区二区不卡在线视频| 亚洲欧美国产视频| 亚洲AV精品一区二区三区不卡| 色噜噜色啪在线视频| 日本激情网址| 欧美一区二区三区久久综| 蜜桃AV色欲A片精品一区| 久久全国免费观看视频| 久久精品影视| 久久久久久久久人体| 久久免费看少妇高潮A片特爽| 黄页网站18以下勿看免费| 狠日狠干日曰射| 久草高清在线|