色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

2020年十大機器學習研究進展

深度學習自然語言處理 ? 來源:機器之心 ? 作者:機器之心 ? 2021-02-05 09:17 ? 次閱讀

去年有哪些機器學習重要進展是你必須關注的?聽聽 DeepMind 研究科學家怎么說。

2020 年因為新冠疫情,很多人不得不在家工作和學習,大量人工智能學術會議也轉為線上。不過在去年我們仍然看到了很多 AI 技術領域的進展。DeepMind 研究科學家 Sebastian Ruder 近日幫我們對去年的機器學習社區進行了一番總結。

首先你必須了解的是:這些重點的選擇基于作者個人熟悉的領域,所選主題偏向于表示學習、遷移學習,面向自然語言處理(NLP)。如果讀者有不同的見解,可以留下自己的評論。

Sebastian Ruder 列出的 2020 年十大機器學習研究進展是:

大模型和高效模型

418993b6-603e-11eb-8b86-12bb97331649.png

語言模型從 2018 年到 2020 年的發展(圖片來自 State of AI Report 2020)。

2020 年發生了什么?

在過去的一年,我們看到了很多前所未有的巨型語言和語音模型,如 Meena(Adiwardana et al., 2020)、Turing-NLG、BST(Roller et al., 2020)和 GPT-3(Brown et al., 2020)。與此同時,研究人員們也早已意識到訓練這樣的模型要耗費過量的能源(Strubell et al., 2019),并轉而探索體量更小、效果仍然不錯的模型:最近的一些進展方向來自于裁剪((Sajjad et al., 2020、Sanh et al., 2020、)、量化(Fan et al., 2020b)、蒸餾(Sanh et al., 2019、Sun et al., 2020)和壓縮(Xu et al., 2020)。

另有一些研究關注如何讓 Transformer 架構本身變得更高效。其中的模型包括 Performer(Choromanski et al., 2020)和 Big Bird(Zaheer et al., 2020),如本文第一張圖所示。該圖顯示了在 Long Range Arena 基準測試中不同模型的性能(y 軸)、速度(x 軸)和內存占用量(圓圈大小)(Tay et al., 2020)。

像 experiment-impact-tracker 這樣的工具(Henderson et al., 2020)已讓我們對于模型的能耗效率更為了解。其研究者還推動了評估效率的競賽和基準測試,如 EMNLP 2020 上的 SustaiNLP 研討會,NeurIPS 2020 上的 Efficient QA 競賽和 HULK(Zhou et al., 2020。

模型體量的擴大可以讓我們不斷突破深度學習能力的極限。而為了在現實世界部署它們,模型必須高效。這兩個方向也是相輔相成的:壓縮大號模型可以兼顧效率和性能(Li et al., 2020),而效率更高的方法也可以推動更強、更大的模型(Clark et al., 2020)。

鑒于對效率和可用性的考慮,我認為未來研究的重點不僅僅是模型的表現和參數數量,也會有能耗效率。這會有助于人們對于新方法進行更全面的評估,從而縮小機器學習研究與實際應用之間的差距。

檢索增強

4213f326-603e-11eb-8b86-12bb97331649.png

使用 REALM 進行無監督預訓練,檢索器和編碼器經過了聯合預訓練。

大規模模型可以利用預訓練數據學習出令人驚訝的全局知識,這使得它們可以重建事實(Jiang et al., 2020)并在不接觸外界上下文的情況下回答問題(Roberts et al., 2020)。然而,把這些知識隱式地存儲在模型參數中效率很低,需要極大的模型來存儲足量的信息。與之不同的是,最近的一些方法選擇同時訓練檢索模型和大規模語言模型,在知識密集型 NLP 任務上獲得了強大的結果,如開放域問答(Guu et al., 2020、Lewis et al., 2020)和語言建模(Khandelwal et al., 2020)。

這些方法的主要優點是將檢索直接集成到語言模型的預訓練中,從而讓語言模型效率更高,專注于學習自然語言理解中更具挑戰性的概念。因此在 NeurIPS 2020 EfficientQA 競賽中的最佳系統依賴于檢索(Min et al., 2020)。

檢索是很多生成任務的標準方法,例如文本摘要和對話此前已大量被摘要生成所替代 (Allahyari et al., 2017)。檢索增強生成可以將兩個方面的優點結合在一起:檢索段的事實正確性、真實性以及所生成文本的相關性和構成。

檢索增強生成對于處理過去困擾生成神經模型的失敗案例尤其有用,尤其是在處理幻覺(hallucination)上(Nie et al., 2019)。它也可以通過直接提供預測依據來幫助使系統更易于解釋。

少樣本學習

4284b688-603e-11eb-8b86-12bb97331649.png

Prompt-based 微調使用模板化的提示和演示(Gao et al., 2020)。

在過去幾年中,由于預訓練的進步,給定任務的訓練樣本數量持續減少(Peters et al., 2018、Howard et al., 2018)。我們現在正處在可以使用數十個示例來完成給定任務的階段(Bansal et al., 2020)。自然地,人們想到了少樣本學習變革語言建模的范式,其中最為突出的例子就是 GPT-3 中上下文學習的方法。它可以根據一些輸入 - 輸出對和一個提示進行預測。無需進行梯度更新。

不過這種方式仍然有其限制:它需要一個巨大的模型——模型需要依賴現有的知識——這個模型能夠使用的知識量受到其上下文窗口的限制,同時提示需要手工完成。

最近的一些工作試圖通過使用小模型,集成微調和自動生成自然語言提示(Schick and Schütze, 2020、Gao et al., 2020、Shin et al., 2020)讓少樣本學習變得更加有效。這些研究與可控神經文本生成的更廣泛領域緊密相關,后者試圖廣泛地利用預訓練模型的生成能力。

有關這一方面,可以參閱 Lilian Weng 的一篇博客:https://lilianweng.github.io/lil-log/2021/01/02/controllable-neural-text-generation.html

少樣本學習可以使一個模型快速承接各種任務。但是為每個任務更新整個模型的權重是很浪費的。我們最好進行局部更新,讓更改集中在一小部分參數里。有一些方法讓這些微調變得更加有效和實用,包括使用 adapter(Houlsby et al., 2019、Pfeiffer et al., 2020a、üstün et al., 2020),加入稀疏參數向量(Guo et al., 2020),以及僅修改偏差值(Ben-Zaken et al., 2020)。

能夠僅基于幾個范例就可以讓模型學會完成任務的方法,大幅度降低了機器學習、NLP 模型應用的門檻。這讓模型可以適應新領域,在數據昂貴的情況下為應用的可能性開辟了道路。

對于現實世界的情況,我們可以收集上千個訓練樣本。模型同樣也應該可以在少樣本學習和大訓練集學習之間無縫切換,不應受到例如文本長度這樣的限制。在整個訓練集上微調過的模型已經在 SuperGLUE 等很多流行任務中實現了超越人類的性能,但如何增強其少樣本學習能力是改進的關鍵所在。

對比學習

46157ae4-603e-11eb-8b86-12bb97331649.png

實例判別從同一個圖像的不同轉換之間比較特征(Caron et al., 2020)。

對比學習是一種為 ML 模型描述相似和不同事物的任務的方法。利用這種方法,可以訓練機器學習模型來區分相似和不同的圖像。

最近,對比學習在計算機視覺和語音的自監督表征學習(van den Oord, 2018; Hénaff et al., 2019)中越來越受歡迎。用于視覺表征學習的新一代自監督強大方法依賴于使用實例判別任務的對比學習:將不同圖像視為 negative pairs,相同圖像的多個視圖視為 positive pairs。最近的方法進一步改善了這種通用框架:SimCLR(Chen et al., 2020)定義了增強型實例的對比損失;Momentum Contrast(He et al., 2020)試圖確保大量且一致的樣本對集合;SwAV(Caron et al., 2020)利用在線聚類;而 BYOL 僅使用 positive pairs(Grill et al., 2020)。Chen 和 He (2020) 進一步提出了一種與先前方法有關的更簡單的表述。

最近,Zhao et al. (2020)發現數據增強對于對比學習至關重要。這可能表明為什么在數據增強不那么普遍的 NLP 中使用大型預訓練模型進行無監督對比學習并不成功。他們還假設,實例判別比計算機視覺中的有監督預訓練更好的原因是:它不會試圖讓一個類中所有實例的特征相似,而是保留每個實例的信息。在 NLP 中,Gunel et al. (2020)無監督的預訓練涉及對成千上萬個單詞類型進行分類的問題不大。在 NLP 中,Gunel et al. (2020)最近采用對比學習進行有監督的微調。

語言建模中常用的 one-hot 標簽與模型輸出的 logit 之間的交叉熵目標存在一些局限性,例如在不平衡的類中泛化效果較差(Cao et al., 2019)。對比學習是一種可選擇的補充范式,可以幫助緩解其中的一些問題。

對比學習與 masked 語言建模相結合能夠讓我們學習更豐富、更魯棒的表征。它可以幫助解決模型異常值以及罕見的句法和語義現象帶來的問題,這對當前的 NLP 模型是一個挑戰。

要評估的不只是準確率

4961da8a-603e-11eb-8b86-12bb97331649.png

用于探索情感分析中否定性的理解的 CheckList 模板和測試(Ribeiro et al., 2020)。

NLP 中的 SOTA 模型已在許多任務上實現了超越人類的表現,但我們能否相信這樣的模型可以實現真正的自然語言理解(Yogatama et al., 2019; Bender and Koller, 2020)?其實,當前的模型離這個目標還很遠。但矛盾的是,現有的簡單性能指標無法體現這些模型的局限性。該領域有兩個關鍵主題:a)精選當前模型難以處理的樣例;b)不只是選擇準確率等簡單指標,而是進行更細粒度的評估。

關于前者,常用的方法是在數據集創建過程中使用對抗過濾(Zellers et al., 2018),過濾出由當前模型正確預測的樣例。最近的研究提出了更有效的對抗過濾方法(Sakaguchi et al., 2020; Le Bras et al., 2020)和一種迭代數據集創建處理方法(Nie et al., 2020; Bartolo et al., 2020),其中樣例經過過濾,模型經過了多輪的重新訓練。Dynabench 提供了此類不斷變化的基準的子集。

針對第二點的方法在本質上也是相似的。該領域通常會創建 minimal pairs(也稱為反事實樣例或對比集)(Kaushik et al., 2020; Gardner et al., 2020; Warstadt et al., 2020),這些 minimal pairs 以最小的方式干擾了樣例,并且經常更改 gold label。Ribeiro et al. (2020) 在 CheckList 框架中形式化了一些基本的直覺,從而可以半自動地創建此類測試用例。此外,基于不同的屬性來描述樣例可以對模型的優缺點進行更細粒度的分析(Fu et al., 2020)

為了構建功能更強大的機器學習模型,我們不僅需要了解模型是否優于先前的系統,還需要了解它會導致哪種錯誤以及還有哪些問題沒被反映出來。通過提供對模型行為的細粒度診斷,我們可以更輕松地識別模型的缺陷并提出解決方案。同樣,利用細粒度的評估可以更細致地比較不同方法的優缺點。

語言模型的現實應用問題

4ccea46e-603e-11eb-8b86-12bb97331649.png

模型會根據看似無害的提示,生成有害的結果(Gehman et al., 2020)。

與 2019 年語言模型 (LMs) 分析側重于此類模型所捕獲的語法、語義和世界認知的氛圍相比,最近一年的分析揭示了許多實際問題。

比如經過預訓練的 LM 容易生成「有毒」的語言 (Gehman et al., 2020)」、泄露信息 (Song & Raghunathan, 2020)。還存在微調后易受到攻擊的問題,以致攻擊者可以操縱模型預測結果 (Kurita et al., 2020; Wallace et al., 2020),以及容易受到模型的影響(Krishna et al., 2020; Carlini et al., 2020)。

眾所周知,預訓練模型可以捕獲關于受保護屬性(例如性別)的偏見(Bolukbasi et al., 2016; Webster et al., 2020),Sun et al., 2019 的研究給出了一份減輕性別偏見的調查。

大公司推出的大型預訓練模型往往在實際場景中會有積極的部署,所以我們更應該意識到這些模型存在什么偏見,又會產生什么有害的后果。

隨著更大模型的開發和推出,從一開始就將這些偏見和公平問題納入開發過程是很重要的。

Multilinguality

5094a422-603e-11eb-8b86-12bb97331649.png

全球標記 / 未標記語言數據的不均衡分布情況(Joshi et al., 2020)。

2020 年,多語言 NLP 有諸多亮點。旨在加強非洲語種 NLP 研究的 Masakhane 機構在第五屆機器翻譯會議 (WMT20) 上發表的主題演講,是去年最令人鼓舞的演講之一。此外,這一年還出現了其他語言的新通用基準,包括 XTREME (Hu et al., 2020)、XGLUE (Liang et al., 2020)、IndoNLU (Wilie et al., 2020)、IndicGLUE (Kakwani et al., 2020)。現有的數據集也拓展到了其他語言中,比如:

SQuAD: XQuAD (Artetxe et al., 2020), MLQA (Lewis et al., 2020), FQuAD (d‘Hoffschmidt et al., 2020);

Natural Questions: TyDiQA (Clark et al., 2020), MKQA (Longpre et al., 2020);

MNLI: OCNLI (Hu et al., 2020), FarsTail (Amirkhani et al., 2020);

the CoNLL-09 dataset: X-SRL (Daza and Frank, 2020);

the CNN/Daily Mail dataset: MLSUM (Scialom et al., 2020)。

通過 Hugging Face 數據集可以訪問其中的大部分數據集,以及許多其他語言的數據。涵蓋 100 種語言的強大模型也就應運而生了,包括 XML-R (Conneau et al., 2020)、RemBERT (Chung et al., 2020)、InfoXLM (Chi et al., 2020)等,具體可參見 XTREME 排行榜。大量特定語言的 BERT 模型已經針對英語以外的語言進行了訓練,例如 AraBERT (Antoun et al., 2020)和 IndoBERT (Wilie et al., 2020),查看 Nozza et al., 2020; Rust et al., 2020 的研究可以了解更多信息。借助高效的多語言框架,比如 AdapterHub (Pfeiffer et al., 2020)、Stanza (Qi et al., 2020)和 Trankit (Nguyen et al., 2020) ,世界上許多語種的建模和應用工作都變得輕松了許多。

此外,還有兩篇很有啟發的研究,《The State and Fate of Linguistic Diversity(Joshi et al., 2020)》和《Decolonising Speech and Language Technology (Bird, 2020)》。第一篇文章強調了使用英語之外語言的緊迫性,第二篇文章指出了不要將語言社區及數據視為商品

拓展到英語之外的 NLP 研究有很多好處,對人類社會能產生實實在在的影響。考慮到不同語言中數據和模型的可用性,英語之外的 NLP 模型將大有作為。同時,開發能夠應對最具挑戰性設置的模型并確定哪些情況會造成當前模型的基礎假設失敗,仍然是一項激動人心的工作。

圖像Transformers

54a37b06-603e-11eb-8b86-12bb97331649.png

Vision Transformer 的論文中,研究者將 Transformer 編碼器應用于平坦圖像塊。

Transformer 在 NLP 領域取得了巨大的成功,但它在卷積神經網絡 CNN 占據主導地位的計算機視覺領域卻沒那么成功。2020 年初的 DETR (Carion et al., 2020) 將 CNN 用于計算圖像特征,但后來的模型完全是無卷積的。Image GPT (Chen et al., 2020)采用了 GPT-2 的方法,直接從像素進行預訓練,其性能優于有監督的 Wide ResNet,后來的模型是將圖像重塑為被視為「token」的補丁。Vision Transformer (ViT,Dosovitskiy et al., 2020)在數百萬個標記好的圖像上進行了訓練,每一個圖像都包含此類補丁,模型效果優于現有最新的 CNN。Image Processing Transformer(IPT,Chen et al., 2020)在被破壞的 ImageNet 示例上進行對比損失預訓練,在 low-level 圖像任務上實現了新的 SOTA。Data-efficient image Transformer (DeiT,Touvron et al., 2020) 以蒸餾方法在 ImageNet 上進行了預訓練。

有趣的是,研究者們發現了 CNN 是更好的教師,這一發現類似于蒸餾歸納偏置(inductive bias)應用于 BERT (Kuncoro et al., 2020)。相比之下在語音領域,Transformer 并未直接應用于音頻信號,而通常是將 CNN 等編碼器的輸出作為輸入(Moritz et al., 2020; Gulati et al., 2020; Conneau et al., 2020)。

與 CNN 和 RNN 相比,Transformer 的歸納偏置更少。盡管在理論上,它不如 RNN (Weiss et al., 2018; Hahn et al., 2020)強大,但如果基于充足的數據和規模,Transformer 會超越其他競爭對手的表現。

未來,我們可能會看到 Transformer 在 CV 領域越來越流行,它們特別適用于有足夠計算和數據用于無監督預訓練的情況。在小規模配置的情況下,CNN 應該仍是首選方法和基線。

自然科學與機器學習

55e5d162-603e-11eb-8b86-12bb97331649.png

基于自注意力的 AlphaFold 架構。

去年,DeepMind 的 AlphaFold 在 CASP 蛋白質折疊挑戰賽中實現了突破性的表現,除此之外,將機器學習應用于自然科學還有一些顯著的進展。MetNet (S?nderby et al., 2020)證明機器學習在降水預測方面優于數值天氣預報;Lample 和 Charton(2020)采用神經網絡求解微分方程,比商用計算機系統效果更好;Bellemare et al. (2020)使用強化學習為平流層的熱氣球導航。

此外,ML 現已被廣泛應用于 COVID-19,例如 Kapoor 等人利用 ML 預測 COVID-19 的傳播,并預測與 COVID-19 相關的結構,Anastasopoulos 等人將相關數據翻譯成 35 種不同的語言,Lee 等人的研究可以實時回答有關 COVID-19 的問題。

有關 COVID-19 相關的 NLP 應用程序的概述,請參閱第一期 COVID-19 NLP 研討會的會議記錄:《Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020》。

自然科學可以說是 ML 最具影響力的應用領域。它的改進涉及到生活的許多方面,可以對世界產生深遠的影響。隨著蛋白質折疊等核心領域的進展,ML 在自然科學中的應用速度只會加快。期待更多促進世界進步的研究出現。

強化學習

5729b822-603e-11eb-8b86-12bb97331649.png

與最先進的智能體相比,Agent57 和 MuZero 整個訓練過程中在雅達利游戲中的表現優于人類基準(Badia et al., 2020)。

單個深度強化學習智能體 Agent57(Badia et al., 2020)首次在 57 款 Atari 游戲上超過人類,這也是深度強化學習領域中的一個長期基準。智能體的多功能性來自于神經網絡,該網絡允許在探索性策略和利用性策略之間切換。

強化學習在游戲方面的另一個里程碑是 Schrittwieser 等人開發的 MuZero,它能預測環境各個方面,而環境對精確的規劃非常重要。在沒有任何游戲動態知識的情況下,MuZero 在雅達利上達到了 SOTA 性能,在圍棋、國際象棋和日本象棋上表現也很出色。

最后是 Munchausen RL 智能體(Vieillard et al., 2020),其通過一個簡單的、理論上成立的修改,提高了 SOTA 水平。

強化學習算法有許多實際意義 (Bellemare et al., 2020)。研究人員對這一領域的基本算法進行改進,通過更好的規劃、環境建模和行動預測產生很大的實際影響。

隨著經典基準(如 Atari)的基本解決,研究人員可能會尋找更具挑戰性的設置來測試他們的算法,如推廣到外分布任務、提高樣本效率、多任務學習等。

原文標題:2020年這10大ML、NLP研究最具影響力:為什么?接下來如何發展?

文章出處:【微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1792

    文章

    47409

    瀏覽量

    238924
  • 機器學習
    +關注

    關注

    66

    文章

    8424

    瀏覽量

    132765

原文標題:2020年這10大ML、NLP研究最具影響力:為什么?接下來如何發展?

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    安全光柵十大品牌排行榜最新2025

    想知道安全光柵十大品牌排行榜最新2025?根據最新的專業評測和信息匯總,以下是2025安全光柵十大品牌排行榜:1.驍銳XAORI成立時間:2008
    的頭像 發表于 01-07 17:47 ?313次閱讀
    安全光柵<b class='flag-5'>十大</b>品牌排行榜最新2025<b class='flag-5'>年</b>

    高能點焊電源技術在現代工業制造中的應用與研究進展

    制造中的最新研究進展。 一、高能點焊電源技術的基本原理及特點 高能點焊電源技術是一種利用高壓脈沖電流實現金屬材料瞬間熔化并完成焊接的先進工藝。其工作原理主要基于
    的頭像 發表于 11-23 08:58 ?193次閱讀
    高能點焊電源技術在現代工業制造中的應用與<b class='flag-5'>研究進展</b>

    上海光機所在多路超短脈沖時空同步測量方面取得研究進展

    圖1.超短脈沖時空同步實驗的光路圖 近日,中科院上海光機所高功率激光物理聯合實驗室在多路超短脈沖時間同步與空間疊合度測量方面取得研究進展,相關研究成果以“High-precision
    的頭像 發表于 11-11 06:25 ?184次閱讀
    上海光機所在多路超短脈沖時空同步測量方面取得<b class='flag-5'>研究進展</b>

    AI大模型的最新研究進展

    AI大模型的最新研究進展體現在多個方面,以下是對其最新進展的介紹: 一、技術創新與突破 生成式AI技術的爆發 : 生成式AI技術正在迅速發展,其強大的生成能力使得AI大模型在多個領域得到廣泛應用
    的頭像 發表于 10-23 15:19 ?479次閱讀

    中國信通院發布“2024云計算十大關鍵詞”

    7月23日,由中國通信標準化協會主辦,中國信息通信研究院(簡稱“中國信通院”)承辦的“2024可信云大會”在京召開。大會上,中國信通院正式發布“2024云計算十大關鍵詞”,中國信通院云計算與大數
    的頭像 發表于 08-02 08:28 ?653次閱讀
    中國信通院發布“2024云計算<b class='flag-5'>十大</b>關鍵詞”

    導熱紙(膜)的研究進展 | 晟鵬技術突破導熱芳綸紙

    問題。紙張及薄膜具有良好的柔韌性、優異的加工性和厚度可調整性,是良好的柔性導熱材料。本文概述了近年來導熱紙(膜)的研究進展,對不同基材的導熱紙進行了歸納分類和介紹,重點
    的頭像 發表于 07-12 08:10 ?711次閱讀
    導熱紙(膜)的<b class='flag-5'>研究進展</b> | 晟鵬技術突破導熱芳綸紙

    度亙核芯榮獲“2023度中國十大光學產業技術”獎

    5月18日,由光電匯主辦的“2023中國十大光學產業技術”年度評選頒獎典禮于武漢光谷科技會展中心隆重召開。經專家評審、網絡投票等嚴格評選,度亙核芯“用于車載激光雷達的940nm芯片與光纖模塊”在一
    的頭像 發表于 05-23 08:28 ?635次閱讀
    度亙核芯榮獲“2023<b class='flag-5'>年</b>度中國<b class='flag-5'>十大</b>光學產業技術”獎

    量子計算+光伏!本源研究成果入選2023度“中國地理科學十大研究進展

    近日中國地理學會公布了2023度“中國地理科學十大研究進展”本源量子參與的“量子地理計算技術、軟件及應用”研究成果獲選系量子計算領域唯一入選單位來源:中國地理學會此次入選的“量子地理
    的頭像 發表于 05-10 08:22 ?512次閱讀
    量子計算+光伏!本源<b class='flag-5'>研究</b>成果入選2023<b class='flag-5'>年</b>度“中國地理科學<b class='flag-5'>十大</b><b class='flag-5'>研究進展</b>”

    綜述:高性能銻化物中紅外半導體激光器研究進展

    據麥姆斯咨詢報道,近期,由中國科學院半導體研究所和中國科學院大學組成的科研團隊受邀在《激光技術》期刊上發表了以“高性能銻化物中紅外半導體激光器研究進展”為主題的文章。該文章第一作者為曹鈞天,通訊作者為楊成奧和牛智川研究員。
    的頭像 發表于 04-13 12:08 ?2034次閱讀
    綜述:高性能銻化物中紅外半導體激光器<b class='flag-5'>研究進展</b>

    中國科學十大進展!華為云盤古氣象大模型入選!

    今日,國家自然科學基金委員發布了2023度中國科學十大進展,榜單囊括一中最重大的科學發現、科學進展及未來趨勢,華為云盤古氣象大模型入選。
    的頭像 發表于 03-01 09:37 ?651次閱讀
    中國科學<b class='flag-5'>十大</b><b class='flag-5'>進展</b>!華為云盤古氣象大模型入選!

    2023度中國半導體十大研究進展出爐,一項傳感器技術入榜(附全名單)

    來源:《半導體學報》? ?2月5日,《半導體學報》發布2023度“中國半導體十大研究進展”名單,其中,一項傳感技術入選。 ? 由中國科學院上海技術物理研究所紅外科學與技術重點實驗室胡
    的頭像 發表于 02-20 08:37 ?846次閱讀
    2023<b class='flag-5'>年</b>度中國半導體<b class='flag-5'>十大</b><b class='flag-5'>研究進展</b>出爐,一項傳感器技術入榜(附全名單)

    睿創微納8微米榮獲“2023度山東十大科技創新成果”

    近日,在煙臺召開的兩院院士評選“2023中國/世界十大科技進展新聞”發布會上,公布了“2023度山東省十大科技創新成果”榜單。其中,睿創
    的頭像 發表于 01-25 16:27 ?727次閱讀

    睿創微納8微米榮獲“2023度山東十大科技創新成果”

    1月11日,兩院院士評選“2023中國/世界十大科技進展新聞”發布會在煙臺召開,會上公布“2023度山東省十大科技創新成果”榜單。
    的頭像 發表于 01-16 09:48 ?557次閱讀
    睿創微納8微米榮獲“2023<b class='flag-5'>年</b>度山東<b class='flag-5'>十大</b>科技創新成果”

    2024 十大突破性技術”榜單

    初,《麻省理工科技評論》(MITTechnologyReview)發布了其2024十大突破性技術”榜單,這份榜單突出了一些可能對世界產生顯著影響的技術。在最新的20
    的頭像 發表于 01-16 08:27 ?1568次閱讀
    2024 <b class='flag-5'>年</b>“<b class='flag-5'>十大</b>突破性技術”榜單

    福布斯公布關于2024人工智能發展的十大預見

    近日,福布斯公布了他們對2024人工智能發展的十大預見,這些預測簡潔而又充滿洞察力。
    的頭像 發表于 01-12 10:18 ?1062次閱讀
    主站蜘蛛池模板: xxxjapanese丰满奶水| 久久精品中文字幕有码日本| 琪琪的色原网站| 岛国在线无码免费观| 无人区乱码1区2区3区网站| 国模沟沟一区二区三区| 在线伦理电影网| 日本xxxx96| 果冻传媒免费观看| 99re8热视频这在线视频| 日日碰狠狠躁久久躁77777| 金发欧美一区在线观看| 99久久国语露脸精品国产| 午夜欧洲亚洲AV永久无码精品| 久久精品亚洲| 粉嫩自拍 偷拍 亚洲| 亚洲人成网77777色在线播放| 欧美残忍xxxx极端| 国精一区二区AV在线观看网站 | 亚洲 欧美 日本 国产 高清| 可以看的黄页的网站| 耽美肉文 高h失禁| 在线播放无码字幕亚洲| 涩涩在线观看免费视频| 狼群影院视频在线观看WWW| 国产成人免费片在线观看| 4388成人| 亚洲欧美自拍明星换脸| 日本人xxxⅹ18hd19hd| 久久青草热热在线精品| 国产激情精品久久久久久碰| 俄罗斯摘花| 蜜芽在线影片| 青青app| 亚洲成在人线视频| 97人妻无码AV碰碰视频| 国产精品高清m3u8在线播放| 久久热这里只有 精品| 色婷婷综合久久久中文字幕| 一区三区三区不卡| 俄罗斯mm|