色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡計算:精確識別納米級有序結構

ExMh_zhishexues ? 來源:知社學術圈 ? 作者:知社學術圈 ? 2021-02-23 15:08 ? 次閱讀

目前的材料科學家一般通過分析一系列顯微照片來研究或描述工程材料的特性,包括從毫米到納米的復雜微觀結構。這些工作通常是由科學家個人手動完成的,有時還需要計算技術的輔助。這些以人為中心的工作流程存在嚴重的缺點,如對專業要求高、可重復性差、過程耗時長等。以納米級L12型有序結構為例,該結構被廣泛用于面心立方(FCC)合金中,以利用其硬化能力,從而提高機械性能。這些細尺度的顆粒通常與具有相同原子構型、不考慮化學種類的基體完全相干,這使得他們的表征具有挑戰性。空間分布圖(SDMs)用于通過詢問重建原子探針斷層掃描(APT)數據內原子的三維(3D)分布來探究局部秩序。然而,手動分析完整的點云(> 1000萬個)以尋找數據中保留的部分晶體學信息,幾乎是不可能的。

b250fb4c-74df-11eb-8b86-12bb97331649.jpg

來自德國馬普所的Yue Li和Leigh T. Stephenson等提出了一種基于卷積神經網絡(CNNs)的策略,利用APT數據自動識別FCC基合金中的納米級L12型有序結構,具有超高的識別能力。該方法首先生成了模擬L12有序結構的SDMs和FCC矩陣。這些模擬圖像結合少量的實驗數據,用于訓練基于CNN的L12有序結構識別模型。最后,成功應用該方法揭示了FCC Al-Li-Mg體系中平均半徑為2.54 nm的L12型δ'-Al3(LiMg)納米顆粒的3D分布。可檢測得納米域最小半徑甚至低至5 ?。所提出的CNN-APT方法很有希望在不久的將來擴展到識別其他納米級的有序結構,甚至更有挑戰性的短程有序現象中。

原文標題:npj: 卷積神經網絡計算—精確識別納米級有序結構

文章出處:【微信公眾號:知社學術圈】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4772

    瀏覽量

    100855
  • 納米
    +關注

    關注

    2

    文章

    697

    瀏覽量

    37025

原文標題:npj: 卷積神經網絡計算—精確識別納米級有序結構

文章出處:【微信號:zhishexueshuquan,微信公眾號:知社學術圈】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常
    的頭像 發表于 11-15 14:53 ?521次閱讀

    卷積神經網絡的工作原理和應用

    卷積神經網絡(FCN)是深度學習領域中的一種特殊類型的神經網絡結構,尤其在計算機視覺領域表現出色。它通過全局平均池化或轉置卷積處理任意尺寸
    的頭像 發表于 07-11 11:50 ?1170次閱讀

    卷積神經網絡的實現原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 10:49 ?562次閱讀

    bp神經網絡卷積神經網絡區別是什么

    結構、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經網絡的比較: 基本結構 BP神經網絡是一種多層前饋神經網絡,由輸入層、隱藏層和
    的頭像 發表于 07-03 10:12 ?1225次閱讀

    卷積神經網絡的基本結構和工作原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 09:38 ?672次閱讀

    卷積神經網絡計算過程和步驟

    卷積神經網絡(Convolutional Neural Network, CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 09:36 ?615次閱讀

    卷積神經網絡訓練的是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 09:15 ?428次閱讀

    卷積神經網絡的原理與實現

    1.卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 卷積
    的頭像 發表于 07-02 16:47 ?607次閱讀

    卷積神經網絡的基本原理和應用范圍

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹
    的頭像 發表于 07-02 15:30 ?1229次閱讀

    卷積神經網絡的基本結構及其功能

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-02 14:45 ?2309次閱讀

    卷積神經網絡的原理是什么

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹
    的頭像 發表于 07-02 14:44 ?672次閱讀

    卷積神經網絡在圖像識別中的應用

    卷積操作 卷積神經網絡的核心是卷積操作。卷積操作是一種數學運算,用于提取圖像中的局部特征。在圖像識別
    的頭像 發表于 07-02 14:28 ?1170次閱讀

    卷積神經網絡和bp神經網絡的區別

    不同的神經網絡模型,它們在結構、原理、應用等方面都存在一定的差異。本文將從多個方面對這兩種神經網絡進行詳細的比較和分析。 引言 神經網絡是一種模擬人腦
    的頭像 發表于 07-02 14:24 ?4244次閱讀

    卷積神經網絡的基本原理、結構及訓練過程

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習算法,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-02 14:21 ?2663次閱讀

    卷積神經網絡的基本結構

    廣泛應用于圖像識別、自然語言處理、語音識別等領域。本文將詳細闡述卷積神經網絡的概念、基本結構及其在各領域的應用。
    的頭像 發表于 07-01 15:58 ?467次閱讀
    主站蜘蛛池模板: 国产午夜亚洲精品理论片八戒 | 国产精品久久久久影院| 台湾佬综合娱乐网| 国产自啪偷啪视频在线| 曰批视频免费40分钟不要钱 | 日产亚洲一区二区三区| 国产午夜精品一区二区| 最近高清中文字幕无吗免费看| 欧美午夜特黄AAAAAA片| 国产九九九九九九九A片| 影音先锋av丝袜天堂| 热99re久久精品国产首页| 国产亚洲国际精品福利| 52色擼99热99| 无码专区无码专区视频网网址| 久久99热这里只频精品6| 一级无毛片| 欧美最猛黑人AAAAA片| 亚洲精品久久午夜麻豆| 麻豆AV福利AV久久AV| 古代荡女丫鬟高H辣文纯肉| 亚洲三级在线视频| 人妻换人妻AA视频| 精品国产自在现线拍国语| www免费看.男人的天堂| 亚洲免费视频观看| 日本午夜视频在线| 久久这里只有精品国产精品99| 国产白丝精品爽爽久久蜜臀| 在线观看视频国产| 天天槽任我槽免费| 男插女高潮一区二区| 精品午夜寂寞影院在线观看| 高清AV熟女一区| 97免费视频在线| 亚洲深夜在线| 午夜国产一区在线观看| 欧美男同gay粗大又长| 久久亚洲高清观看| 韩国演艺圈悲惨在线| 国产精品久久久久久久伊一|